The particles are quite tightly packed together but still have enough room to be able to move and flow, their bonds aren't as strong as a solids are
Answer:
Explanation:
Using freezing point depression formula,
ΔTemp.f = Kf * b * i
Where,
ΔTemp.f = temp.f(pure solvent) - temp.f(solution)
b = molality
i = van't Hoff factor
Kf = cryoscopic constant
= 1.86°C/m for water
= (0 - (-5.58))/1.86
= 3.00 mol/kg
Assume 1 kg of water(solvent)
= (3.00 x 1)
= 3.00 mol.
Answer:
a. Phosphoric Acid
b. Acetic Acid
c. Hypochlorous Acid
Explanation:
A buffer works when the pH of this one is in pKa ± 1. That means, to find which buffer system works in some pH you need to find pKa:
pKa = -log Ka
<em>pKa Acetic acid:</em>
-log1.8x10⁻⁵ = 4.74
<em>pKa phosphoric acid:</em>
-log7.5x10⁻³ = 2.12
<em>pKa hypochlorous acid:</em>
-log3.5x10⁻⁸ = 7.46
a. For a pH of 2.8 the best choice is phophoric acid because its effective range is: 1.12 - 3.12 and 2.8 is between these values.
b. pH 4.5. Acetic acid. effective between pH's 3.74 - 5.74
c. pH 7.5. Hypochlorous acid that works between 6.46 and 8.46
Circulating round the nucleus are the electrons in various orbits of different energy levels. Electrons are negatively charged and represented by the symbol 'e'. In the given image the number of protons are -6. Hence the element in question is Carbon as Carbon has the atomic number 6.
Answer:
Explanation:
There's no equation attached. What equation is it?