Answer:
The answer to your question is given below
Explanation:
1. C. 2NaCl + I2 —> 2NaI + Cl2 => C. Single displacement.
From the above equation, we can see that I2 replaces Cl in NaCl to produce NaI. This is simply called a single displacement reaction.
2. E. 2C4H10 + 13O2 —> 8CO2 + 10H2O => E. Combustion.
The above equation shows the burning of Hydrocarbon in the presence of O2. This is simply called Combustion as CO2 and H2O is produced.
3. D 2H2O —> 2H2 + O2 => D. Decomposition.
From the above equation, we can see that a single compound H2O produces two elements H2 and O2. This is simply called a decomposition reaction.
4. A. ZnS + 2HCl —> ZnCl2 + H2S => A. Double Decomposition.
From the above equation, we can see that Cl replaces S in ZnS to produce ZnCl2 and S replaces Cl in HCl to produce H2S. This is simply called double displacement reaction.
5. B. H2 + Br2 —> 2HBr => B. Synthesis.
From the above equation, we can see that two element H2 and Br2 combine to produce a single compound HBr. This is simply called a synthesis reaction.
Answer:
<h2>0.0003</h2>
<h2>HERE IS YOUR ANSWER </h2>
When lights hits an object, the light either get absorbed, reflected or refracted
Answer:
Option B. 4.74×10¯¹⁹ J.
Explanation:
The following data were obtained from the question:
Wavelength (λ) = 4.2×10¯⁷ m
Energy (E) =.?
Next, we shall determine the frequency of the wave. This can be obtained as follow:
Wavelength (λ) = 4.2×10¯⁷ m
Velocity (v) = constant = 3×10⁸ m/s
Frequency (f) =.?
v = λf
3×10⁸ = 4.2×10¯⁷ × f
Divide both side by 4.2×10¯⁷
f = 3×10⁸ / 4.2×10¯⁷
f = 7.143×10¹⁴ s¯¹
Therefore, the frequency of the wave is 7.143×10¹⁴ s¯¹.
Finally, we shall determine the energy of the wave using the following formula
E = hf
Where
E is the energy.
h is the Planck's constant
f is the frequency
Thus, the enery of the wave can be obtained as follow:
Frequency (f) = 7.143×10¹⁴ s¯¹.
Planck's constant = 6.63×10¯³⁴ Js
Energy (E) =..?
E = hf
E = 6.63×10¯³⁴ × 7.14×10¹⁴
E = 4.74×10¯¹⁹ J
Therefore, the energy of the wave is 4.74×10¯¹⁹ J.
Answer:
Number of moles = 10.6 mol
Explanation:
Given data:
Molar mass of H = 1.008 g/mol
Molar mass of C = 12.01 g/mol
Molar mass of O = 16.00 g/mol
Mass of citric acid = 2.03 kg (2.03×1000 = 2030 g)
Number of moles of citric acid = ?
Solution:
Formula:
Number of moles = mass/molar mass
Now we will calculate the molar mass of citric acid:
C₆H₈O₇ = (12.01× 6) + (1.008×8) + (16.00×7)
C₆H₈O₇ = 72.06 + 8.064+112
C₆H₈O₇ = 192.124g/mol
Number of moles = 2030 g/ 192.124g/mol
Number of moles = 10.6 mol