The chemist the count the number of particles (Atoms, Molecules or Formula Unit) in a given number of moles of a substance by using following relationship.
Moles = # of Particles / 6.022 × 10²³
Or,
# of Particles = Moles × 6.022 × 10²³
So, from above relation it is found that 1 mole of any substance contains exactly 6.022 × 10²³ particles. Greater the number of moles greater will be the number of particles.
I think it’s B vibrations in molecules
Explanation: The Kinetic Theory of Matter states that matter is composed of a large number of small particles—individual atoms or molecules—that are in constant motion.
Answer:
fdfdgiukjgrguhjnfvthhhdqddwsvhjjj
Given what we know, the ability of water to absorb more heat than the other substances mentioned is a reflection of its high boiling point.
<h3>What do we mean by boiling point?</h3>
This is the temperature at which the substance boils, and subsequently evaporates. Having a higher boiling point means that the substance will be able to absorb much more heat than that of a substance with a lower boiling point.
Therefore, Water molecules have a higher boiling point than molecules of similar size, such as ammonia and methane, reflecting its capacity to absorb large amounts of heat.
To learn more about water molecules visit:
brainly.com/question/11405437?referrer=searchResults
Answer:
20.3 % NaCl
Explanation:
Given data:
Mass of solute = 45.09 g
Mass of solvent = 174.9 g
Mass percent of solution = ?
Solution:
Mass of solution = 45.09 g + 174.9 g
Mass of solution = 220 g
The solute in 220 g is 45.09 g
220 g = 2.22 × 45.09
In 100 g solution amount of solute:
45.09 g/2.22 = 20.3 g
Thus m/m% = 20.3 % NaCl