The study of EM is essential to understanding the properties of light, its propagation through tissue, scattering and absorption effects, and changes in the state of polarization. ... Since light travels much faster than sound, detection of the reflected EM radiation is performed with interferometry.
<span>Since the torque involves the product of force times lever arm, a small force can exert a greater torque than a larger force if the small force has a large enough lever arm.
With a large force exerts a small torque is a gate, hinged in its vertical line (axis). When pushed from a point near to the hinge, a very large amount is needed to open the gate.
</span><span>
</span>
Answer:
The minimum compression is 
Explanation:
From the question we are told that
The mass of the block is 
The spring constant is 
The coefficient of static friction is 
For the the block not slip it mean the sum of forces acting on the horizontal axis is equal to the forces acting on the vertical axis
Now the force acting on the vertical axis is the force due to gravity which is mathematically given as

And the force acting on the horizontal axis is force due to the spring which is mathematically represented as

where x is the minimum compression to keep the block from slipping
Now equating this two formulas and making x the subject

substituting values we have


Answer:
I only speak English
Explanation:
I'm sorry can you type it in English
Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N