Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.

A pair of equal gravitational forces ... one in each direction ...
exists between every speck of mass in the universe and every
other speck of mass.
Answer:
The pressure of the remaining gas in the tank is 6.4 atm.
Explanation:
Given that,
Temperature T = 13+273=286 K
Pressure = 10.0 atm
We need to calculate the pressure of the remaining gas
Using equation of ideal gas

For a gas

Where, P = pressure
V = volume
T = temperature
Put the value in the equation
....(I)
When the temperature of the gas is increased
Then,
....(II)
Divided equation (I) by equation (II)





Hence, The pressure of the remaining gas in the tank is 6.4 atm.
Answer:
Lifetime = 4.928 x 10^-32 s
Explanation:
(1 / v2 – 1 / c2) x2 = T2
T2 = (1/ 297900000 – 1 / 90000000000000000) 0.0000013225
T2 = (3.357 x 10^-9 x 1.11 x 10^-17) 1.3225 x 10^-6
T2 = (3.726 x 10^-26) 1.3225 x 10^-6 = 4.928 x 10^-32 s