1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
3 years ago
8

The curvature of the helix r​(t)equals(a cosine t )iplus(a sine t )jplusbt k​ (a,bgreater than or equals​0) is kappaequalsStartF

raction a Over a squared plus b squared EndFraction . What is the largest value kappa can have for a given value of​ b?
Physics
1 answer:
4vir4ik [10]3 years ago
3 0

Answer:

\kappa = \frac{1}{2 b}

Explanation:

The equation for kappa ( κ) is

\kappa = \frac{a}{a^2 + b^2}

we can find the maximum of kappa for a given value of b using derivation.

As b is fixed, we can use kappa as a function of a

\kappa (a) = \frac{a}{a^2 + b^2}

Now, the conditions to find a maximum at a_0 are:

\frac{d \kappa(a)}{da} \left | _{a=a_0} = 0

\frac{d^2\kappa(a)}{da^2}  \left | _{a=a_0} < 0

Taking the first derivative:

\frac{d}{da} \kappa = \frac{d}{da}  (\frac{a}{a^2 + b^2})

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} \frac{d}{da}(a)+ a * \frac{d}{da}  (\frac{1}{a^2 + b^2} )

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 + a * (-1)  (\frac{1}{(a^2 + b^2)^2} ) \frac{d}{da}  (a^2+b^2)

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 - a  (\frac{1}{(a^2 + b^2)^2} ) (2* a)

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 -  2 a^2  (\frac{1}{(a^2 + b^2)^2} )

\frac{d}{da} \kappa = \frac{a^2+b^2}{(a^2 + b^2)^2}  -  2 a^2  (\frac{1}{(a^2 + b^2)^2} )

\frac{d}{da} \kappa = \frac{1}{(a^2 + b^2)^2} (a^2+b^2 -  2 a^2)

\frac{d}{da} \kappa = \frac{b^2 -  a^2}{(a^2 + b^2)^2}

This clearly will be zero when

a^2 = b^2

as both are greater (or equal) than zero, this implies

a=b

The second derivative is

\frac{d^2}{da^2} \kappa = \frac{d}{da} (\frac{b^2 -  a^2}{(a^2 + b^2)^2} )

\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} \frac{d}{da} ( b^2 -  a^2 ) + (b^2 -  a^2) \frac{d}{da} ( \frac{1}{(a^2 + b^2)^2}  )

\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} ( -2  a ) + (b^2 -  a^2) (-2) ( \frac{1}{(a^2 + b^2)^3}  ) (2a)

\frac{d^2}{da^2} \kappa = \frac{-2  a}{(a^2 + b^2)^2} + (b^2 -  a^2) (-2) ( \frac{1}{(a^2 + b^2)^3}  ) (2a)

We dcan skip solving the equation noting that, if a=b, then

b^2 -  a^2 = 0

at this point, this give us only the first term

\frac{d^2}{da^2} \kappa = \frac{- 2  a}{(a^2 + a^2)^2}

if a is greater than zero, this means that the second derivative is negative, and the point is a minimum

the value of kappa is

\kappa = \frac{b}{b^2 + b^2}

\kappa = \frac{b}{2* b^2}

\kappa = \frac{1}{2 b}

You might be interested in
3. Specify the wrong sentences.
soldi70 [24.7K]

Answer:

a: false

b: True

c: i dont know

Explanation:

4 0
1 year ago
A single loop of wire with an area of 0.0900 m2 is in a uniform magnetic field that has an initial value of 3.80 T, is perpendic
erica [24]

Answer:

(a) 0.0171 V

Explanation:

A = 0.09 m^2, dB/dt = 0.190 T/s

(a) According to the law of electromagntic induction

e = dФ / dt

e = A dB / dt

e = 0.09 x 0.190 = 0.0171 V

(b)

as we know

i = e / R

we can find induced current by dividing induced emf by resistance

5 0
3 years ago
The phase change in which a substance changes from a gas directly to a solid is
vlabodo [156]
<span>Condensation is the change of the substance from liquid to solid phase. Example of this is the formation of ice. Vaporization is the change of substance from liquid to gas phase. Example of this is the boiling of water. Deposition is the change of a substance from gas to solid phase. Example of this is the formation of ice on a winter day. Sublimation is the change of a substance from solid to gas phase. Example of this is dry ice. The answer is letter C.</span>
7 0
3 years ago
Read 2 more answers
Johnson made a hole at the bottom of a plastic bottle containing water. However, he noticed that the water did not flow out from
Sphinxa [80]

Answer:

  • a) See explanation below

  • b) At X.

Explanation:

Please, see the picture attached with the image of the plastic bottle for this question.

<u>(a) Explain why the water could not flow out of the bottle.</u>

What makes the water flow out of the botlle is the force of gravity, whic attracts the water towards the Earth.

When Johnson made a small hole at the bottom of the plastic bottle containing water, the air outside the bottle, which surrounds it and exerts a pressure all over the outer walls of the bottle, exerted a force against the small area of water "over" the hole that is in contact with the air.

Thus, this force of the air pushing upward through the wall opposed the force of gravity pulling downward making the net force zero and the water cannot fall.

<u>(b) To make the water flow out more easily, his teacher suggested making another hole. At which position - X, Y or Z, should he make the 2nd hole in order for the water to flow out the fastest?</u>

You must open the hole at a place where there is not water but air, such that the outer air can enter in the bottle.

That will make that the pressure in the space over the water inside the bottle be equal to the pressure outside.

The pressure of the air above the water will push it downward. Now, the force from the pressure of air inside the water, which is downward, opposes the upward force from the pressure of air around the first hole, and the net force will be downward, making the water flow out more easily.

Thus, the position where he should make the second hole in order for the water to flow fastest is at X.

4 0
3 years ago
Write down formula of power​
r-ruslan [8.4K]
There u go -> P=f/a
8 0
3 years ago
Read 2 more answers
Other questions:
  • In most cases, a multicellular organism is not an exact copy of its parents because it
    10·2 answers
  • Why does the density of a substance remain the same for different amount of the substance
    11·1 answer
  • What is mean by the net displacement in transverse wave
    10·1 answer
  • A wave has a frequency of 240 Hz and a wavelength of 3.0m what is the speed of the wave
    11·2 answers
  • ASAP!! please What is the answer? MCQ. Thank you
    9·2 answers
  • What is the mass of a basketball that has Connecticut energy of 102 J and it's travelling at 5 m/s
    14·1 answer
  • This is the given equation of vibration of
    15·1 answer
  • 50 POINTS!! BRAINLEST
    13·2 answers
  • 1. Two blocks travel along a level frictionless surface. Block A is initially moving to the right at 5.0 m/s, while block B is i
    10·1 answer
  • When a car moves up a hill with constant
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!