1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
3 years ago
8

The curvature of the helix r​(t)equals(a cosine t )iplus(a sine t )jplusbt k​ (a,bgreater than or equals​0) is kappaequalsStartF

raction a Over a squared plus b squared EndFraction . What is the largest value kappa can have for a given value of​ b?
Physics
1 answer:
4vir4ik [10]3 years ago
3 0

Answer:

\kappa = \frac{1}{2 b}

Explanation:

The equation for kappa ( κ) is

\kappa = \frac{a}{a^2 + b^2}

we can find the maximum of kappa for a given value of b using derivation.

As b is fixed, we can use kappa as a function of a

\kappa (a) = \frac{a}{a^2 + b^2}

Now, the conditions to find a maximum at a_0 are:

\frac{d \kappa(a)}{da} \left | _{a=a_0} = 0

\frac{d^2\kappa(a)}{da^2}  \left | _{a=a_0} < 0

Taking the first derivative:

\frac{d}{da} \kappa = \frac{d}{da}  (\frac{a}{a^2 + b^2})

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} \frac{d}{da}(a)+ a * \frac{d}{da}  (\frac{1}{a^2 + b^2} )

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 + a * (-1)  (\frac{1}{(a^2 + b^2)^2} ) \frac{d}{da}  (a^2+b^2)

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 - a  (\frac{1}{(a^2 + b^2)^2} ) (2* a)

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 -  2 a^2  (\frac{1}{(a^2 + b^2)^2} )

\frac{d}{da} \kappa = \frac{a^2+b^2}{(a^2 + b^2)^2}  -  2 a^2  (\frac{1}{(a^2 + b^2)^2} )

\frac{d}{da} \kappa = \frac{1}{(a^2 + b^2)^2} (a^2+b^2 -  2 a^2)

\frac{d}{da} \kappa = \frac{b^2 -  a^2}{(a^2 + b^2)^2}

This clearly will be zero when

a^2 = b^2

as both are greater (or equal) than zero, this implies

a=b

The second derivative is

\frac{d^2}{da^2} \kappa = \frac{d}{da} (\frac{b^2 -  a^2}{(a^2 + b^2)^2} )

\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} \frac{d}{da} ( b^2 -  a^2 ) + (b^2 -  a^2) \frac{d}{da} ( \frac{1}{(a^2 + b^2)^2}  )

\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} ( -2  a ) + (b^2 -  a^2) (-2) ( \frac{1}{(a^2 + b^2)^3}  ) (2a)

\frac{d^2}{da^2} \kappa = \frac{-2  a}{(a^2 + b^2)^2} + (b^2 -  a^2) (-2) ( \frac{1}{(a^2 + b^2)^3}  ) (2a)

We dcan skip solving the equation noting that, if a=b, then

b^2 -  a^2 = 0

at this point, this give us only the first term

\frac{d^2}{da^2} \kappa = \frac{- 2  a}{(a^2 + a^2)^2}

if a is greater than zero, this means that the second derivative is negative, and the point is a minimum

the value of kappa is

\kappa = \frac{b}{b^2 + b^2}

\kappa = \frac{b}{2* b^2}

\kappa = \frac{1}{2 b}

You might be interested in
During a normal reaction to a stressful event, muscles are moved to their maximum capacity, and sensitivity is
Aleonysh [2.5K]

Answer:

The paper focuses on the biology of stress and resilience and their biomarkers in humans from the system science perspective. A stressor pushes the physiological system away from its baseline state toward a lower utility state. The physiological system may return toward the original state in one attractor basin but may be shifted to a state in another, lower utility attractor basin. While some physiological changes induced by stressors may benefit health, there is often a chronic wear and tear cost due to implementing changes to enable the return of the system to its baseline state and maintain itself in the high utility baseline attractor basin following repeated perturbations. This cost, also called allostatic load, is the utility reduction associated with both a change in state and with alterations in the attractor basin that affect system responses following future perturbations. This added cost can increase the time course of the return to baseline or the likelihood of moving into a different attractor basin following a perturbation. Opposite to this is the system's resilience which influences its ability to return to the high utility attractor basin following a perturbation by increasing the likelihood and/or speed of returning to the baseline state following a stressor. This review paper is a qualitative systematic review; it covers areas most relevant for moving the stress and resilience field forward from a more quantitative and neuroscientific perspective.

Explanation:

8 0
2 years ago
Please complete it if you know the answer. "The active region of a transistor is for.........
zubka84 [21]

Answer:

the active region is bound by cutoff region and saturation or power dissipation region.

Explanation:

5 0
3 years ago
Which is not a type of driving distraction
Yuliya22 [10]

No grooming your snail while driving. Just ask Spongebob. Oh by the way, what are the options?

7 0
2 years ago
2. Conner flips a coin up in the air (to determine if he or his sister needs to do the dishes) at an upward velocity of 4.00 m/s
Lana71 [14]

Answer:

5.6

Explanation:

Not so sure

4 0
2 years ago
How many neutrons does protium have
Sonbull [250]

Answer:

I believe none

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • A 7.00- kg bowling ball moves at 3.00 m/s. How fast musta
    6·1 answer
  • Consider a projectile launched with an initial velocity of v0 = 120 ft/s, inclined at an angle, θ with the horizontal. Let us as
    9·1 answer
  • Elements have the same number of ______ as you move from left to right
    15·2 answers
  • What is heat that is transferred by movement of a fluid
    7·1 answer
  • What things affect gravity
    11·2 answers
  • A local AM radio station broadcasts at a frequency of 696 KHz. Calculate the energy of the frequency at which it is broadcasting
    8·1 answer
  • YALL PLEASE PLEASE HELP IF YOU KNOE THE ANSWER TO BOTH OF THEM IT WILL BE VERY NICE PLEASE HELP
    9·1 answer
  • Can someone Please help
    12·1 answer
  • Which metal and which power supply are used to make a permanent magnet,​
    10·2 answers
  • If an athlete takes 60s to complete a race of 300m find his speed
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!