Answer:
We show added energy to a system as +Q or -W
Explanation:
The first law of thermodynamics states that, in an isolated system, energy can neither be created nor be destroyed;
Energy is added to the internal energy of a system as either work energy or heat energy as follows;
ΔU = Q - W
Therefore, when energy is added as heat energy to a system, we show the energy as positive Q (+Q), when energy is added to the system in the form of work, we show the energy as minus W (-W).
Answer:
"Magnitude of a vector can be zero only if all components of a vector are zero."
Explanation:
"The magnitude of a vector can be smaller than length of one of its components."
Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.
"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."
False. Magnitude of a vector is always positive.
"Magnitude of a vector can be zero if only one of components is zero."
Wrong. For the magnitude of a vector to be zero, all components must be zero.
"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."
Wrong. The magnitude of a vector depends on all components, not only the X component.
"Magnitude of a vector can be zero only if all components of a vector are zero."
True.
Average speed (v) = total distance(d) / total time (t)
d = 57 + 87km = 144km
t = 2 + 3hrs = 5hrs
v = d÷t = 144÷5 = 28.8km/hr
The correct answer to this problem would be that like poles repel and unlike poles attract.
N and N poles repel
S and S poles repel
N and S poles attract
S and N poles attract
Answer: D) like poles repel each other. unlike poles attract each other
I hope this helps!
The work is equal to the product between the force applied and the distance covered by the box:

In our problem, W=556 J, and d=1.3 m (the box is lifted to a height of 1.3 m, so it covered 1.3 m from its initial point). Therefore we can find the force applied to lift the box: