The energy of moving electrical charges is Electrical energy
Hope its the answer you are finding and hope it helps....
Lo experiences tidal heating primarily because lo’s elliptical orbit causes the tidal force on lo to vary as it orbits the Jupiter. Thus, lo’s elliptical orbit is essential to its tidal heating. This elliptical orbit, in turn, is an end result of the orbital resonance among lo, Europa and ganymade. This orbital resonance origin lo to have a more elliptical orbit than it would because lo intermittently passes Europa and ganymade in the same orbital position. We cannot perceive tidal forces of tidal heating in lo but rather we foresee that they must occur based on the orbital characteristic of the moons and active volcanoes on lo is the observational evidence that tidal heating is significant in lo.
The answer is true about the cabins in commercial airliners that require pressurization.
<h3>Why are the cabins of commercial airplanes pressurized?</h3>
Airplanes are pressurized because the air is very thin at the high altitude where they fly. The passenger jet has a cruising altitude of about 30,000 - 40,000 feet. At this altitude or height, humans can't breathe very well and our body gets less amount of oxygen. Most aircraft cabins are pressurized to an altitude about 8,000 feet. This is called cabin altitude. Aircraft pilots have access to the control's mode of a cabin pressure control system and if needed it can command the cabin to depressurize.
So we can conclude that cabins in commercial airliners require pressurization because of the greater pressure of the surrounding environment.
Learn more about pressure here: brainly.com/question/28012687
#SPJ1
Answer:
≅ 17000 years or 1.7 x 10⁴ years
Explanation:
time= total energy/power
= (10⁸J/kg)(2x10³⁰ kg) / 3.8 x 10²⁶ J/s
= 526,315,789,473 s
= 16689 years
≅ 17000 years or 1.7 x 10⁴ years
Answer:
The index of refraction of the liquid is 1.35.
Explanation:
It is given that,
Critical angle for a certain air-liquid surface, 
Let n₁ is the refractive index of liquid and n₂ is the refractive index of air, n₂ =1
Using Snell's law for air liquid interface as :




So, the index of refraction of the liquid is 1.35. Hence, this is the required solution.