1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harkovskaia [24]
4 years ago
9

Which of these is a solution to the equation 2(x – 5) = 9 – 3x + 6 + 8 + 3x + 7? A.x = 10

Mathematics
1 answer:
koban [17]4 years ago
4 0
First, multiply the 2 times (x-5) and you get 2x-10 on the left side.
Then on the right side, add up all the similar terms and you get 30 (the -3x and +3x cancel each other out.
2x-10=30
Then add 10 to both sides and you get 2x=40.
Then divide both sides by 2 and you get x=20.
Answer is B.
You might be interested in
How much more is 9,00,000 than 4,50,000
KIM [24]

Answer: 4,50,000 or 63

Step-by-step explanation: I add

5 0
3 years ago
Read 2 more answers
What is the volume of the figure?
Brut [27]
Do you have a better picture?
8 0
3 years ago
Six machines, each working at the same constant rate, together can complete a certain job in 12 days. How many additional machin
Schach [20]

Answer:

3 machine

Step-by-step explanation:

It is given that 6 machine each working at the same rate can complete the work in 12 days

We the has to complete in 8 days

Let we need x extra machine to complete the work in 8 days

So total number of machines =x+6

Now according to man work day equation M_1D_1=M_2D_2

6\times 12=(x+6)\times 8

8x+48=72

8x=24

x=3 machine

7 0
3 years ago
Evaluate <br> 15+ (29-13)=
leonid [27]
The answer is 31
29 - 13 is 16
16 + 15 is 31
6 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Other questions:
  • Idk what to do.And this is due tomorrow
    11·1 answer
  • Please Help Fast!!! 20 points
    6·1 answer
  • A group of 5 friends shares 35 pieces of candy equally. How many pieces of candy does each friend receive?
    10·1 answer
  • Select the correct answer. The triangles in the diagram are congruent. If mF = 40°, mA = 80°, and mG = 60°, what is mB? A. 40° B
    13·2 answers
  • Please help with this question ​
    8·1 answer
  • Alex bought a television set for $900 and pay the sales tax of 8% how much did he pay for the television set
    15·1 answer
  • If one of the zeroes of the cubic polynomial p(x)=ax³+bx²+cx+d is zero then find the product of other two zeroes of p(x).​
    5·1 answer
  • Gavin needs to buy candy for the 11 students in his class plus himself. Gavin and each student will get one bag of candy. He use
    5·2 answers
  • What is the difference between an irrational number and an integer?? please explain!
    14·2 answers
  • Help ill give u lots of points dude
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!