Answer:
6495.19 Joule
Explanation:
F = Weight of the crate = 250 N
d = Distance the cart is pushed = 30 m
θ = Angle of inclination = 60°
The weight of the crate will be resloved into two components
Fdsinθ and Fdcosθ
Work done by the force of gravity is
W = Fdsinθ
⇒W = 250×30×sin60
⇒W = 6495.19 Joule
∴ The work done by the force of gravity is 6495.19 Joule
The solution to the problem is as follows:
<span>First, I'd convert 188 mi/hr to ft/s. You should end up with about ~275.7 ft/s.
So now write down all the values you know:
Vfinal = 275.7 ft/s
Vinitial = 0 ft/s
distance = 299ft
</span>
<span>Now just plug in Vf, Vi and d to solve
</span>
<span>Vf^2 = Vi^2 + 2 a d
</span><span>BTW: That will give you the acceleration in ft/s^2. You can convert that to "g"s by dividing it by 32 since 1 g is 32 ft/s^2.</span>
For t1:
t1 = square root of 2h1 / g = square root of 2 * 0.5 / 9.8 = 0.319 sec
For t2:
t2 = sqaure root of 2h2 / g = square root of 2 * 1.0 / 9.8 = 0.451 sec
Wherein:
t = time(s) for the vertical movement
h= height
g = gravity (using the standard 9.8 m/sec measurement)
d1 = 1*0.319 = 0.319 m
d2 = 0.5 * 0.451 = 0.225 m
Where:
d = hor. distance
ratio = d1:d2
= 0.319 : 0.225
=3.19 : 2.25
The answer is 3.19 : 2.25
Either it don't have a magnetic field around them or it's not a sheet steel door