Answer:
A) 12.57 m
B) 5 RPM
C) 3.142 m/s
Explanation:
A) Distance covered in 1 Revolution:
The formula that gives the relationship between the arc length or distance covered during circular motion to the angle subtended or the revolutions, is given as follows:
s = rθ
where,
s = distance covered = ?
r = radius of circle = 2 m
θ = Angle = 2π radians (For 1 complete Revolution)
Therefore,
s = (2 m)(2π radians)
<u>s = 12.57 m</u>
B) Angular Speed:
The formula for angular speed is given as:
ω = θ/t
where,
ω = angular speed = ?
θ = angular distance covered = 15 revolutions
t = time taken = 3 min
Therefore,
ω = 15 rev/3 min
<u>ω = 5 RPM</u>
C) Linear Speed:
The formula that gives the the linear speed of an object moving in a circular path is given as:
v = rω
where,
v = linear speed = ?
r = radius = 2 m
ω = Angular Speed in rad/s = (15 rev/min)(2π rad/1 rev)(1 min/60 s) = 1.571 rad/s
Therefore,
v = (2 m)(1.571 rad/s)
<u>v = 3.142 m/s</u>
Answer:
0.34 sec
Explanation:
Low point of spring ( length of stretched spring ) = 5.8 cm
midpoint of spring = 5.8 / 2 = 2.9 cm
Determine the oscillation period
at equilibrum condition
Kx = Mg
g= 9.8 m/s^2
x = 2.9 * 10^-2 m
k / m = 9.8 / ( 2.9 * 10^-2 ) = 337.93
note : w =
=
= 18.38 rad/sec
Period of oscillation = 
= 0.34 sec
Answer:
Option D) 4A
Explanation:
As the cycle of the wave passes by, the amplitude gives the longest journey when the spot travels from the undistributed position. During each cycle the spot travels "Four times" .
Considering one of this cycle, if it begins to travel from it's undistributed position , there would be four movements i.e
* Upward movement through distance A
*Downward movement through distance A
*Downward again through distance A
*Upward through distance A.
Then it would travel back to its undistributed position held
The time constant determines how long it takes for the capacitor to charge.
To find the answer, we have to know more about the time constant of the capacitor.
<h3>What is time constant?</h3>
- The time it takes for a capacitor to discharge 36.8% of its charge in a discharging circuit or charge up to 63.2% of its maximum capacity in a charging circuit, given that it has no initial charge, is the time constant of a resistor-capacitor series combination.
- The circuit's reaction to a step-up (or constant) voltage input is likewise determined by the time constant.
- As a result, the time constant determines the circuit's cutoff frequency.
Thus, we can conclude that, the time constant determines how long it takes for the capacitor to charge.
Learn more about the time constant here:
brainly.com/question/17050299
#SPJ4