1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juliette [100K]
3 years ago
6

You want to launch a stone using the elastic band of a slingshot. The force that the elastic band applies to an object is given

by F = −α∆s4 , where α = 45 N m4 and ∆s is the displacement of the elastic band from its equilibrium position. You load the slingshot with the stone and pull back on the stone horizontally, stretching the the elastic band 20 cm. How much work do you do on the stone-elastic band system?
Physics
1 answer:
Ksenya-84 [330]3 years ago
3 0

Answer:

0.00288 J

Explanation:

We know that

W= Fds

F = −α∆s^4

α = 45 N/m^4 and ∆s = displacement

W= −α∆s^4ds

integrating both the sides from s= 0 to 0.2

W= 45/5×0.2^5= 0.00288 J

You might be interested in
The diagram illustrates the movement of sound waves between an observer and a race car. As the race car drives away from the obs
Andrei [34K]
I believe the answer is d
6 0
3 years ago
You are sitting on a merry-go-round at a distance of 2m from its center. It spins 15 times in 3 min. What distance do you move a
soldier1979 [14.2K]

Answer:

A) 12.57 m

B) 5 RPM

C) 3.142 m/s

Explanation:

A) Distance covered in 1 Revolution:

The formula that gives the relationship between the arc length or distance covered during circular motion to the angle subtended or the revolutions, is given as follows:

s = rθ

where,

s = distance covered = ?

r = radius of circle = 2 m

θ = Angle = 2π radians  (For 1 complete Revolution)

Therefore,

s = (2 m)(2π radians)

<u>s = 12.57 m</u>

B) Angular Speed:

The formula for angular speed is given as:

ω = θ/t

where,

ω = angular speed = ?

θ = angular distance covered = 15 revolutions

t = time taken = 3 min

Therefore,

ω = 15 rev/3 min

<u>ω = 5 RPM</u>

C) Linear Speed:

The formula that gives the the linear speed of an object moving in a circular path is given as:

v = rω

where,

v = linear speed = ?

r = radius = 2 m

ω = Angular Speed in rad/s = (15 rev/min)(2π rad/1 rev)(1 min/60 s) = 1.571 rad/s

Therefore,

v = (2 m)(1.571 rad/s)

<u>v = 3.142 m/s</u>

8 0
3 years ago
A mass is attached to a vertical spring, which then goes into oscillation. At the high point of the oscillation, the spring is i
andrew-mc [135]

Answer:

0.34 sec

Explanation:

Low point of spring ( length of stretched spring ) = 5.8 cm

midpoint of spring = 5.8 / 2 = 2.9 cm

Determine the oscillation period

at equilibrum condition

Kx = Mg

g= 9.8 m/s^2

x = 2.9 * 10^-2 m

k / m = 9.8 / ( 2.9 * 10^-2 ) =  337.93

note : w = \sqrt{k/m}   = \sqrt{337.93} = 18.38 rad/sec

Period of oscillation =  2\pi  / w

                                  = 0.34 sec

8 0
3 years ago
A transverse wave on a string has an amplitude a. A tiny spot on the string is colored red. As one cycle of the wave passes by
aliya0001 [1]

Answer:

Option D) 4A

Explanation:

As the cycle of the wave passes by, the amplitude gives the longest journey when the spot travels from the undistributed position. During each cycle the spot travels "Four times" .

Considering one of this cycle, if it begins to travel from it's undistributed position , there would be four movements i.e

* Upward movement through distance A

*Downward movement through distance A

*Downward again through distance A

*Upward through distance A.

Then it would travel back to its undistributed position held

4 0
3 years ago
What determines how long it takes for the capacitor to charge?
myrzilka [38]

The time constant determines how long it takes for the capacitor to charge.

To find the answer, we have to know more about the time constant of the capacitor.

<h3>What is time constant?</h3>
  • The time it takes for a capacitor to discharge 36.8% of its charge in a discharging circuit or charge up to 63.2% of its maximum capacity in a charging circuit, given that it has no initial charge, is the time constant of a resistor-capacitor series combination.
  • The circuit's reaction to a step-up (or constant) voltage input is likewise determined by the time constant.
  • As a result, the time constant determines the circuit's cutoff frequency.

Thus, we can conclude that, the time constant determines how long it takes for the capacitor to charge.

Learn more about the time constant here:

brainly.com/question/17050299

#SPJ4

6 0
1 year ago
Other questions:
  • How does a bicycle rider's energy of motion changes as the gain speed while riding down a hill?
    10·1 answer
  • What is the relationship between work and power
    7·2 answers
  • 550 g of water at 105°C is poured into an 855 g aluminum container with an initial temperature of 11°C. The specific heat of alu
    9·1 answer
  • Use what you know about mass and how you use it to calculate force in the following situation. If each washer has a mass of 4.9
    15·2 answers
  • The position of a ball as a function of time is given by
    9·1 answer
  • The most common example of a(n) ____ switched network is the conventional telephone system.
    13·1 answer
  • Planet with the most extreme temperature range
    13·1 answer
  • A stone is thrown vertically upward with an initial velocity of 40m/s. Taking g = 10 m/s^2 find the maximum height reach by the
    9·2 answers
  • Explain the difference between mass and weight for objects on earth and on the moon
    7·2 answers
  • If a 20 N force acts on a 10 kg object for 0.5 seconds. If the object starts at rest, what would it’s new p (momentum) and v (ve
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!