Answer:
When conducting research, scientists use the scientific method to collect measurable, empirical evidence in an experiment related to a hypothesis (often in the form of an if/then statement), the results aiming to support or contradict a theory.
I HOPE ITS RIGHT
What are the statements?? I need to know the statements so i can help you.
(You can message me the statements or comment them. I will try and help you as soon as possible :)! )
Answer:
The maximum electric power output is 
Explanation:
From the question we are told that
The capacity of the hydroelectric plant is 
The level at which water is been released is 
The efficiency is
0.90
The electric power output is mathematically represented as
Where
is the potential energy at level h which is mathematically evaluated as

and
is the potential energy at ground level which is mathematically evaluated as


So
here 
where V is volume and
is density of water whose value is 
So

substituting values


The maximum possible electric power output is

substituting values


Answer:
= 4.3 × 10 ⁻¹⁴ m
Explanation:
The alpha particle will be deflected when its kinetic energy is equal to the potential energy
Charge of the alpha particle q₁= 2 × 1.6 × 10⁻¹⁹ C = 3.2 × 10⁻¹⁹ C
Charge of the gold nucleus q₂= 79 × 1.6 × 10⁻¹⁹ = 1.264 × 10⁻¹⁷C
Kinetic energy of the alpha particle = 5.28 × 10⁶ × 1.602 × 10⁻¹⁹ J ( 1 eV)
= 8.459 × 10⁻¹³
k electrostatic force constant = 9 × 10⁹ N.m²/c²
Kinetic energy = potential energy = k q₁q₂ / r where r is the closest distance the alpha particle got to the gold nucleus
r = ( 9 × 10⁹ N.m²/c² × 3.2 × 10⁻¹⁹ C × 1.264 × 10⁻¹⁷C) / 8.459 × 10⁻¹³
= 4.3 × 10 ⁻¹⁴ m
The forces that make a passenger speed up, slow down, or
turn a curve are the same forces that have the same effect
on the driver and anybody else in the car.
-- Speeding up . . .
the back of the seat
friction between the car seat and the seat of your pants
-- Slowing down . . .
the seat belt
friction between the car seat and the seat of your pants
-- Turning away from a straight line . . .
the seat belt
friction between the car seat and the seat of your pants
the door, or whatever or whomever you're leaning against