The chemical bonds in CH4 are all single bonds. C only can bond 4 times because it needs 8 electrons in it's outer shell and only has four right now. The bonds represented are all single bonds because there are two electrons present on each side of the carbon. Two electrons, in this case, equals one bond.
Answer:
The molarity of the solution is 1.7
.
Explanation:
Molarity (M) or Molar Concentration is the number of moles of solute that are dissolved in a certain volume.
The molarity of a solution is calculated by dividing the moles of the solute by the volume of the solution:

Molarity is expressed in units
.
In this case, you know:
- moles of solute= 5.1
- volume= 3 L
Replacing:

Solving:
Molarity= 1.7 
<u><em>The molarity of the solution is 1.7 </em></u>
<u><em>.</em></u>
Answer:
Rate = k . [B]² . [C]
Explanation:
The dependence of the reaction rate on the concentration of the reactants is given by the reaction order of each one, as shown in the rate equation.
![Rate=k.[A]^{x} .[B]^{y} .[C]^{z}](https://tex.z-dn.net/?f=Rate%3Dk.%5BA%5D%5E%7Bx%7D%20.%5BB%5D%5E%7By%7D%20.%5BC%5D%5E%7Bz%7D)
where,
k is the rate constant
x, y, z are the reaction orders.
- <em>The rate of reaction is not affected by changing the concentration of species A.</em> This means that the reaction order for A is x = 0 since when its concentration changes, the rate stays the same.
- <em>Leaving all other factors identical, doubling the concentration of species B increases the rate by a factor of 4.</em> This means that the reaction order for B is y = 2, so when the concentration is doubled, the new rate is 2² = 4 times the initial rate.
- The rate of the reaction is linearly dependent on the concentration of C. This means that the reaction order for C is z = 1, that is, a linear dependence.
All in all, the rate equation is:
Rate = k . [B]² . [C]
Answer:
<h3>Yeah, <em><u>Benzene have isomers.</u></em></h3>