Answer:
When the body is exposed to viruses, bacteria, fungi, or parasites through an infection or vaccination the immune system creates antibodies and immune cells that inactivate or destroy the specific infectious organism.
Explanation:
hope this helps :D
Answer:
Saturated solution
We should raise the temperature to increase the amount of glucose in the solution without adding more glucose.
Explanation:
Step 1: Calculate the mass of water
The density of water at 30°C is 0.996 g/mL. We use this data to calculate the mass corresponding to 400 mL.

Step 2: Calculate the mass of glucose per 100 g of water
550 g of glucose were added to 398 g of water. Let's calculate the mass of glucose per 100 g of water.

Step 3: Classify the solution
The solubility represents the maximum amount of solute that can be dissolved per 100 g of water. Since the solubility of glucose is 125 g Glucose/100 g of water and we attempt to dissolve 138 g of Glucose/100 g of water, some of the Glucose will not be dissolved. The solution will have the maximum amount of solute possible so it would be saturated. We could increase the amount of glucose in the solution by raising the temperature to increase the solubility of glucose in water.
The law of conservation of mass states that mass or matter cannot be created or destroyed, only transferred or recombined.
For chemical equations, this law means that each element must be accounted for equally both for reactants and products. So the same numbers of each atom must match on each side, hence the necessity for balancing the chemical equation accurately. This created a field of chemistry called Stoichiometry, which accounts for the conservation of matter throughout chemical reactions and processes.
Answer:
Energy will enter the peas from the water
Explanation:
An exothermic process would occur as the energy gathered by the heated water is transferred to the peas.
Answer:
(3) NaNO₃
Step-by-step explanation:
Sodium nitrate has ionic bonds, because it consists of Na⁺ and NO₃⁻ ions.
However, the nitrate ions have <em>covalent bonds</em> between the O atoms and the central N atoms.
(1) and (2) are <em>wrong</em>. Both N₂O₅ and HCl consist of nonmetals, so they are <em>covalent</em> compounds.
(4) is <em>wrong</em>. NaCl has <em>only ionic bonds</em> between the Na⁺ and Cl⁻ ions