Answer:
Explanation:
The combustion reaction of Octane is:
To calculate the mass of CO₂ and H₂O produced, we need to know the mass of octane combusted.
We calculate the mass of Octane from the given volume and density, using the following <em>conversion factors</em>:
Now we<u> convert 1.24 gallons to mL</u>:
- 1.24 gallon *
4693.4 mL
We <u>calculate the mass of Octane</u>:
- 4693.4 mL * 0.703 g/mL = 3.30 g Octane
Now we use the <em>stoichiometric ratios</em> and <em>molecular weights</em> to <u>calculate the mass of CO₂ and H₂O</u>:
- CO₂ ⇒ 3.30 g Octane ÷ 114g/mol *
* 44 g/mol = 10.19 g CO₂
- H₂O ⇒ 3.30 g Octane ÷ 114g/mol *
* 18 g/mol = 4.69 g H₂O
How to calcutate concentration of solution.
there is 12gram of solute in a 36 gram solution
then you take 12 divided by 24 because 36-12=24 which is youe solvent
Answer:
The unknown temperature is 304.7K
Explanation:
V1 = 100mL = 100*10^-3L
P1 = 99.10kPa = 99.10*10³Pa
V2 = 74.2mL = 74.2*10^-3L
P2 = 133.7kPa = 133.7*10³Pa
T2 = 305K
T1 = ?
From combined gas equation,
(P1 * V1) / T1 = (P2 * V2) / T2
Solving for T1,
T1 = (P1 * V1 * T2) / (P2 * V2)
T1 = (99.10*10³ * 100*10^-3 * 305) / (133.7*10³ * 74.2*10^-3)
T1 = 3022550 / 9920.54
T1 = 304.67K
T1 = 304.7K