The simple equation used to calculate work is force multiplied by distance, thus as this is the case increasing the distance by a certain amount, assuming the force applied to the object is constant, the amount of work you are doing on the box for instance pushing it, is going to be greater
Since you are pushing the box with the same force covering a greater distance with the force.
Explanation:
an increase in concentration increases the rate of the reaction. This is because there are more reactant particles available which allows for more effective collisions between reactant particles in a given period of time. More effective collisions bring about a faster rate of reaction.
Answer:
in both nucleophil attach the c and leaving group leave but in acyl nu. subsituation c of carbonyl because of double bond with o have bigger positive charge and is better electrophil so do it faster,also alkyl nu. subsituation can have rearangment if going from sn1 and in sn2 sterichemistry of molecule change , acyl nu. subsituation most of time is better
Answer:
157.64 L
Explanation:
We'll begin by converting 30 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
T(°C) = 30 °C
T(K) = 30 °C + 273
T (K) = 303 K
Next, we shall convert 600 mmHg to atm. This can be obtained as follow:
760 mmHg = 1 atm
Therefore,
600 mmHg = 600 mmHg × 1 atm / 760 mmHg
600 mmHg = 0.789 atm
Finally, we shall determine the volume of the gas. This can be obtained as follow:
Number of mole (n) = 5 moles
Temperature (T) = 303 K
Pressure (P) = 0.789 atm
Gas constant (R) = 0.0821 atm.L/Kmol
Volume (V) =?
PV = nRT
0.789 × V = 5 × 0.0821 × 303
0.789 × V = 124.3815
Divide both side by 0.789
V = 124.3815 / 0.789
V = 157.64 L
Therefore, the volume of the gas is 157.64 L
Would that be mass times volume?