<span> are composed of the fragments, or CLASTS. If PRE-existing </span>minerals<span> and rock. A </span>clast<span> is a fragment of </span>geological detritus,<span>chunks and smaller grains of rock broken off other rocks by </span>physical weathering.[2]<span> Geologists use the term CLASTIC </span><span>with reference to </span>sedimentary rocks<span> as well as to particles in </span>sediment transport<span> whether in </span>suspension<span> or as </span>bed load<span>, and in </span>sediment<span> deposits.</span>
Ms ( mass of solute): 33,6g
mss (mass of solution): 33,6+192g = 225,6g
__________________
C = ms/mss × 100%
C = 33.6/225.6 × 100%
C = 14,89% ≈ 14,9%
:•)
Answer: I believe the answer is d) the rock crumbles at an ocean ridges
Explanation:
C6H6 is the
most insoluble in water as it is non polar in nature. HCL is highly soluble in
water as it is an electrolyte. Kbr is also highly soluble in water. NaCl
dissolves in water very quickly. CH3CH3OH is also totally soluble in water
because of the Hydrogen bonding formation. It is a well known fact that the
hydrocarbons do not easily mix with water. C6H6 being a strong hydrocarbon does
not mix with water. So among NaCl, KBr, CH3CH3OH, HCl and C6H6, the hydrocarbon
is the least soluble in water.
Answer:
36.63 Torr
Explanation:
You need to use two expressions, one for pressure and the other with the relation of density and height of the column.
For the pressure:
P = h * d * g (1)
h is height.
d density
g gravity
The second expression put a relation between the densities and height of the column so:
d1/d2 = h1/h2 (2)
let 1 be the phthalate, and 2 the mercury.
Let's calculate first the relation of density:
d1/d2 = 13.53 / 1.046 = 12.93
Now with the first expression, we can calculate the pressure so:
P = hdg
We have two compounds so,
h1d1g = h2d2g ---> gravity cancels out
From here, we can solve for h2:
h2 = h1*(d1/d2)
replacing:
h2 = 459 / 12.53
h2 = 36.63 mm
1 mmHg is 1 torr, therefore the pressure of the gas in Torr would be 36.63 Torr