Answer:
571.81 mL
Explanation:
Assuming constant pressure, we can solve this problem by using <em>Charles' law</em>, which states that at constant pressure:
Where in this case:
We <u>input the data</u>:
- 852 mL * 200 K = V₂ * 298 K
And <u>solve for V₂</u>:
The new volume would be 571.81 mL.
Answer:
o tudo bie ms ouemuyllen quearomuit oajuda rvoc mi psarcisoqu e termnei ed cmoepetar esta questlã.oê
Explanation:
a egur oguta nestáincompel ta
The continental crust is less dense than the <span>oceanic crust and seems to "float" on the mantle.</span>
Answer:
New predators and not a lot of food
Explanation:
If new predators come than they can eat the insects and go extinct. Also if there is not a lot if food than the will die because they have nothing to eat.
Answer:
the mass of CaO present at equilibrium is, 0.01652g
Explanation:
= 3.8×10⁻²
Now we have to calculate the moles of CO₂
Using ideal gas equation,
PV =nRT
P = pressure of gas = 3.8×10⁻²
T = temperature of gas = 1000 K
V = volume of gas = 0.638 L
n = number of moles of gas = ?
R = gas constant = 0.0821 L.atm/mole.k

Now we have to calculate the mass of CaO
mass = 2.95 * 10 ⁻⁴ × 56
= 0.01652g
Therefore,
the mass of CaO present at equilibrium is, 0.01652g