Ok, I think this is right but I am not sure:
Q = ϵ
0AE
A= π π
r^2
=(8.85x10^-12 C^2/Nm^2)
( π π (0.02m)^2)
(3x10^6 N/C) =3.3x10^-8 C = 33nC N = Q/e = (3.3x10^-8 C)/(1.60x10^-19 C/electron) = 2.1x10^11 electrons
Answer:
Force is 14.93N along positive y axis.
Explanation:
We know that force 'F' on a current carrying conductor placed in a magnetic field of intensity B is given by

where L is the length of the conductor
Applying values in the equation we have force F =

Thus force is 14.93N along positive y axis.
If you remember the formula for potential energy,
then this question is a piece-o-cake.
<em>Potential energy = (mass) x (<u>acceleration of gravity</u>) x (height) .</em>
-- The object's mass is the same everywhere.
-- You said that the height is the same both times.
-- How about the acceleration of gravity ?
Compared to gravity on Earth, it's only 16.5 percent as much on the Moon.
So naturally, from the formula, you'd expect the Potential Energy to be less
on the Moon.