Answer:
41.4* 10^4 N.m^2/C
Explanation:
given:
E= 4.6 * 10^4 N/C
electric field is 4.6 * 10^4 N/C and square sheet is perpendicular to electric field so, area of vector is parallel to electric field
then electric flux = ∫ E*n dA
= ∫ 4.6 * 10^4 * 3*3
= 41.4* 10^4 N.m^2/C
Answer:
Weight = 8.162 Newton.
Explanation:
Given the following data;
Mass = 2.2 kg
Acceleration due to gravity = 3.71 N/kg
To find the weight of the textbook;
Weight = mass * acceleration due to gravity
Weight = 2.2 * 3.71
Weight = 8.162 N
Therefore, the weight of the science textbook in mars is 8.162 Newton.
The addition of any numbers of vector provide the magnitude as well as the direction of the resultant vector, hence the mentioned first option is not true.
The addition of vector required to connect the head of the one vector with the tail of the other vector and any vector can be moved in the plane parallet to the previous location, so, the mentioned second and third options are true.
Answer: 1.76 Nm
Explanation:
If the force pulls horizontally, this means that the force is tangent to the disk at any point of the string unwinding process, so the distance d is irrelevant.
In this case, the torque is directly given by the product of the force times the distance perpendicular to the center of the disk, which is just the radius, as follows:
τ = F * r = 16 N. (0.11) m = 1.76 Nm
Answer:
e. The net magnetic flux in this case would be equal to zero.
Explanation:
As per Gauss law of magnetism we need to find the net magnetic flux through a closed loop
here we know that net magnetic flux is the scalar product of magnetic field vector and area vector
so here we have
= net magnetic flux
since we know that magnetic field always forms closed loop so if we find the integral over a closed loop
then in that case the value of the close integral must be zero
so correct answer would be
e. The net magnetic flux in this case would be equal to zero.