1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
earnstyle [38]
2 years ago
10

A bar magnet was placed underneath a sheet of paper where a pile of iron filings sits. In the presence of the energy stored in t

he magnetic field, the iron filings arranged themselves, creating lines of force. How do the energy and the lines of force change when a stronger bar magnet is used
Physics
1 answer:
Naya [18.7K]2 years ago
4 0

Answer: 1. The field energy will increase

2. The energy increases, and the lines of force are denser

3. It points toward the field of earths magnetic poles

4. 1 and 2 only

5. 2, 4, 1, 3

Explanation: just took it

You might be interested in
You can find electric power lines under the ground by looking for magnetic fields at ground level. This is best explained by whi
luda_lava [24]
What was the answer?

8 0
3 years ago
The flow of electricity can be compared of water in
Anna007 [38]

The flow of electricity can be compared of water in the pipes because both water and electricity moves in the channel.

<h3>How we compare the flow of electricity to water?</h3>

Water flowing in pipes is like flowing of electricity in a circuit. A battery is like a pump from where electricity comes and moves in the circuit. Electrons flowing through wires are like water molecules flowing through pipes. So in comparison between water and electricity, both water and electricity are similar to each other in flowing and movement.

So we can conclude that the flow of electricity can be compared of water in the pipes because both water and electricity moves in the channel.

Learn more about electricity here: brainly.com/question/776932

#SPJ1

7 0
2 years ago
If a girl carries groceries up a flight of stairs, is she doing work on the groceries? Explain.​
nikdorinn [45]

Answer:

Explanation:

Yes she is doing work. With or without the groceries, she is still doing work. She does more work with the groceries than without because Work is defined by F which is defined by mass. The mass increases with the groceries.

The work done is against the force of gravity.

4 0
3 years ago
A fan at a rock concert is 50.0 m from the stage, and at this point the sound intensity level is 114 dB. Sound is detected when
Marianna [84]

Answer:

A) P=13.92\ J.s^{-1}

B) v=3730.9912\ m.s^{-1}

C) v=74.44\ mm.s^{-1}

D) mosquitoes speed in part B is very much larger than that of part C.

Explanation:

Given:

  • Distance form the sound source, s=50\ m
  • sound intensity level at the given location, \beta=114\ dB
  • diameter of the eardrum membrane in humans, d=8.4 \times 10^{-3}\ m
  • We have the minimum detectable intensity to the human ears, I_0=10^{-12}\ W.m^{-2}

(A)

<u>Now the intensity of the sound at the given location is related mathematically as:</u>

\beta=10\ log(\frac{I}{I_0} ) ..........................................(1)

114=10\ log\ (\frac{I}{10^{-12}} )

11.4=log\ I+12\ log\ 10

I=0.2512\ W.m^{-2}

<em>As we know :</em>

I=\frac{P}{A}

0.2512=\frac{P}{\pi\times \frac{8.4^2}{4} }

P=13.92\ J.s^{-1} is the energy transferred to the  eardrums per second.

(B)

mass of mosquito, m=2\times 10^{-6}\ kg

<u>Now the velocity of mosquito for the same kinetic energy:</u>

KE=\frac{1}{2} m.v^2

13.92=\frac{1}{2}\times 2\times 10^{-6}\times v^2

v=3730.9912\ m.s^{-1}

(C)

Given:

  • Sound intensity, \beta = 20\ dB

<u>Using eq. (1)</u>

20=10\ log\ (\frac{I}{10^{-12}} )

2=log\ I+12\ log\ 10

I=10^{-10}\ W.m^{-2}

Now, power:

P=I.A

P=10^{-10}\times \pi\times \frac{8.4^2}{4}

P=5.54\times 10^{-9}\ J.s^{-1}

Hence:

KE=\frac{1}{2} m.v^2

5.54\times 10^{-9}=0.5\times 2\times 10^{-6}\times v^2

v=0.07444\ m.s^{-1}

v=74.44\ mm.s^{-1}

(D)

mosquitoes speed in part B is very much larger than that of part C.

7 0
3 years ago
to 10 Hz. Superimposed on this signal is 60-Hz noise with an amplitude of 0.1 V. It is desired to attenuate the 60-Hz signal to
givi [52]

Answer:

G \sqrt{1 +(\frac{f}{f_c})^{2n}} = 1

If we square both sides we got:

G^2 (1+\frac{f}{f_c})^{2n}= 1

We divide both sides by G^2 and we got:

(1+\frac{f}{f_c})^{2n} = \frac{1}{G^2}

Now we can apply log on both sides and we got:

2n ln(1+\frac{f}{f_c}) = ln (\frac{1}{G^2})

And solving for n we got:

n = \frac{ ln (\frac{1}{G^2})}{2ln(1+\frac{f}{f_c})}

And replacing we got:

n = \frac{ln (\frac{1}{0.1^2})}{2ln(1+\frac{60}{10})}

n = \frac{4.60517}{3.8918}=1.18

And since n needs to be an integer the correct answer would be n=2 for the filter order.

Explanation:

For this case we can use the formula for the Butterworth filter gain given by:

[tec] G = \frac{1}{\sqrt{1 +(\frac{f}{f_c})^{2n}}}[/tex]

Where:

G represent the transfer function and we want that G =0.1 since the desired signal is less than 10% of it's value

f_c = 10 Hz represent the corner frequency

f= 60 Hz represent the original frequency

n represent the filter order and that's the variable that we need to find

G \sqrt{1 +(\frac{f}{f_c})^{2n}} = 1

If we square both sides we got:

G^2 (1+\frac{f}{f_c})^{2n}= 1

We divide both sides by G^2 and we got:

(1+\frac{f}{f_c})^{2n} = \frac{1}{G^2}

Now we can apply log on both sides and we got:

2n ln(1+\frac{f}{f_c}) = ln (\frac{1}{G^2})

And solving for n we got:

n = \frac{ ln (\frac{1}{G^2})}{2ln(1+\frac{f}{f_c})}

And replacing we got:

n = \frac{ln (\frac{1}{0.1^2})}{2ln(1+\frac{60}{10})}

n = \frac{4.60517}{3.8918}=1.18

And since n needs to be an integer the correct answer would be n=2 for the filter order.

7 0
3 years ago
Other questions:
  • What is another name for a business name or manufacture's name
    13·2 answers
  • Two large non-conducting plates of surface area A = 0.25 m 2 carry equal but opposite charges What is the energy density of the
    10·1 answer
  • What are three ways to speed up a<br> reaction?
    15·2 answers
  • To practice Problem-Solving Strategy 15.1 Mechanical Waves. Waves on a string are described by the following general equation y(
    12·1 answer
  • Vector A with arrow, which is directed along an x axis, is to be added to vector B with arrow, which has a magnitude of 5.5 m. T
    8·1 answer
  • List three ways in which decreasing the need to mine gold and reducing its harmful environmental effects. (Core Case Study) coul
    11·1 answer
  • Which statement best compares the accelerations of two objects in free fall?
    6·1 answer
  • An electron in an atom's orbital shell, labeled X in the model below, released enough energy to move to a different orbital shel
    12·1 answer
  • I need the answer to this question what has the student plotted on the vertical axis?
    9·1 answer
  • A system has two possible energy states, E0 and E1 (with E1 &gt; E0). If the difference between these energy states grows (E0 an
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!