<span>Other than rain what kinds of precipitation are there, the following includes: snow, hail, sleet. Precipitation refers to any things that falls down brought by a natural phenomenon because of a chemical reactions and settles to the bottom of a solution. The higher the degree of the precipitation, the bigger the area has that source.</span>
Answer:
72 g/L
Explanation:
The dissolved amount of solute is the difference between the amount you have poured and the amount that precipitated:
125 g - 35 g = 90 g
Thus, 90 grams of solute were dissolved in 1.25 liters. The saturation point is the ratio between the grams dissolved and the volume in liters:
saturation point = 90 g/1.25 L = 72 g/L
The balanced chemical reaction:
<span>5C + 2SO2 → CS2 + 4CO
</span>
We are given the amount of coke to be used for the reaction. This will be the starting point for the calculations.
8 mol C ( 1 mol CS2 / 5 mol C ) = 1.6 mol CS2
Answer:
See explanation below
Explanation:
The question is incomplete. However, here's the missing part of the question:
<em>"For the following reaction, Kp = 0.455 at 945 °C: </em>
<em>C(s) + 2H2(g) <--> CH4(g). </em>
<em>At equilibrium the partial pressure of H2 is 1.78 atm. What is the equilibrium partial pressure of CH4(g)?"</em>
With these question, and knowing the value of equilibrium of this reaction we can calculate the partial pressure of CH4.
The expression of Kp for this reaction is:
Kp = PpCH4 / (PpH2)²
We know the value of Kp and pressure of hydrogen, so, let's solve for CH4:
PpCH4 = Kp * PpH2²
*: You should note that we don't use Carbon here, because it's solid, and solids and liquids do not contribute in the expression of equilibrium, mainly because their concentration is constant and near to 1.
Now solving for PpCH4:
PpCH4 = 0.455 * (1.78)²
<u><em>PpCH4 = 1.44 atm</em></u>