Hey :)
This time the answer is quantitive because the mentions numbers
Hope this helps!
Answer:
Explanation:
None of the statement is true for both chemical and nuclear reactions. In chemical reactions, mass is always conserved and the type of atoms are also conserved.
Considering the Charles's law, the sample of carbon dioxide gas will occupy 308.72 mL.
<h3>Charles's law</h3>
Charles's law establishes the relationship between the temperature and the volume of a gas when the pressure is constant. This law says that the volume is directly proportional to the temperature of the gas: for a given sum of gas at constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases.
Mathematically, Charles's law states that the ratio between volume and temperature will always have the same value:

Considering an initial state 1 and a final state 2, it is fulfilled:

<h3>Final volume in this case</h3>
In this case, you know:
- V1= 250 mL
- T1= 25 C= 298 K (being 0 C=273 K)
- V2= ?
- T2= 95 C= 368 K
Replacing in Charles's law:

Solving:

<u><em>V2= 308.72 mL</em></u>
Finally, the sample of carbon dioxide gas will occupy 308.72 mL.
Learn more about Charles's law:
brainly.com/question/4147359
#SPJ1
667.17 (0.63x1059) shsbsbsb