Answer:

Explanation:
There are two heat transfers involved: the heat lost by the metal block and the heat gained by the water.
According to the Law of Conservation of Energy, energy can neither be destroyed nor created, so the sum of these terms must be zero.
Let the metal be Component 1 and the water be Component 2.
Data:
For the metal:

For the water:




The oxidation number of H is -1.
Sum of the oxidation numbers in each element =
charge of the complex
CaH₂ has 1 Ca atom and 2H atoms. The charge of
the complex is zero. Let’s say Oxidation number of H is "a".
Then,
<span> (+2)
+ 2 x a = 0 </span>
<span> +2 + 2a = 0</span>
2a = -2
a = -1
Hence, the oxidation number of Hydrogen atom in CaH₂ is -1
You keep on saying join fast wdym?!
You need to look at the electronegativity and decide wheter the difference of both of the numbers are significant enough to form a polar bond
Answer:
- Option d. i<u><em>t is higher than the energy of both reactants and products</em></u>
Explanation:
<em>Activated complex</em>, also known as transition state, is the intermediate structure formed in the course of a chemical reaction.
The activated complex is very unstable and of short life: it is at the peak of the potential chemical diagram, and can transform either into the reactants (backward) or the products (forward).
The activation energy of the reaction is the energy needed to reach the activated complex, then both reactants and products are lower in potential chemical energy than the activated complex, which is what explains why the activated complex can transform into one or another, reactants or products.