<span>A capacitor with a very large capacitance is in series with a capacitor
that has a very small capacitance.
The capacitance of the series combination is slightly smaller than the
capacitance of the small capacitor. (choice-C)
The capacitance of a series combination is
1 / (1/A + 1/B + 1/C + 1/D + .....) .
If you wisk, fold, knead, and mash that expression for a while,
you find that for only two capacitors in series, (or 2 resistors or
two inductors in parallel), the combination is
(product of the 2 individuals) / (sum of the individuals) .
In this problem, we have a humongous one and a tiny one.
Let's call them 1000 and 1 .
Then the series combination is
(1000 x 1) / (1000 + 1)
= (1000) / (1001)
= 0.999 000 999 . . .
which is smaller than the smaller individual.
It'll always be that way. </span>
<span>Self-monitoring would be the best way to </span><span>determine your own correct intensity level. I hope this helps! <3
</span>
Answer:
1.38 x 10^-18 J
Explanation:
q = - 1.6 x 10^-19 C
d = 5 x 10^-10 m
the potential energy of the system gives the value of work done
The formula for the potential energy is given by

So, the total potential energy of teh system is

As all the charges are same and the distance between the two charges is same so the total potential energy becomes

K = 9 x 10^9 Nm^2/C^2
By substituting the values

U = 1.38 x 10^-18 J
Answer:
A or B(the answers)
Explanation:
they seem like the most right
Answer:
Time period for Simple pendulum, 
Explanation:
The Simple Pendulum
Consider a small bob of mass
is tied to extensible string of length
that is fixed to rigid support. The bob is oscillating in the plane about verticle.
Let
is the angle made by string with vertical during oscillation.
Vertical component of the force on bob,
Negative sign shows that its opposing the motion of bob.
Taking
as very small angle then, 
Let
is the displacement made by bob from its mean position ,
then, 
so,
........(1)
Since, pendulum is in hormonic motion,
as we know, 
where
is the constant and 
.........(2)
From equation (1) and (2)


Since, 

