At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:

while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:

And the total energy of the system is

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:

while the mass is moving at speed v, and therefore the kinetic energy is

And the total energy is

For the law of conservation of energy, the total energy must be conserved, therefore

. So we can write

that we can solve to find an expression for v:
<span>A unicellular organism, also known as a single-celled organism, is an organism that consists of only one cell, unlike a multicellular organism that consists of more than one cell. ... The main groups of unicellular organisms are bacteria, archaea, protozoa, unicellular algae and unicellular fungi.</span>
I only know what number 1. is and its Mechanical Energy.
Social Classical is not a type of system.