Answer:
320m
Explanation:
The vertical displacement is given by:

Assuming v₀=0, t=8:

Explanation:
Once the force of air resistance is as large as the force of gravity, a balance of forces is attained and the skydiver no longer accelerates. The skydiver is said to have reached a terminal velocity.
M = 10.0 g, the mass of the iron sample
ΔT = 75 - 25.2 = 49.5°C, the decrease in temperature
c = 0.449 J/(g-°C), the specific heat of iron
The heat released is
Q = m*c*ΔT
= (10.0 g)*(0.449 J/(g-°C))*(49.5 C)
= 222.255 J
Answer: 222.3 J (nearest tenth)
Expression to calculate energy from voltage: E= V*Q where E= energy, V= voltage, and Q= charge
Additional help:
-To find the Voltage ( V )
[ V = I x R ] V (volts) = I (amps) x R (Ω)
-To find the Current ( I )
[ I = V ÷ R ] I (amps) = V (volts) ÷ R (Ω)
-To find the Resistance ( R )
[ R = V ÷ I ] R (Ω) = V (volts) ÷ I (amps)
I hope that helps to some extent-
Answer:
Explained
Explanation:
Newton would resort to the classical mechanics and say that the momentum of the particle that is moving with a constant velocity will be given by: momentum = mass x velocity
this approach will highlight the particle nature and will not be relativistic.
De-Broglie will say that the momentum of the particle is related to its associated matter wave and the relation between them is given by:

where \lambda = wavelength of the matter wave associated to the particle, h = planck's constant
and
thus, this highlights the wave nature of the particle and is also relativistic.