Answer:
T=0.372 s, f=2.7 Hz, w=16.9 rad/s, k=179.2 N/m, v= 8.78 m/s, F= 48.4 N
Explanation:
a.)
Period: It is already given in the question "oscillator repeats its motion every 0.372 s".
So T=0.372 s
b)
frequency= f = 1/ T
f = 1/ 0.372
f=2.7 Hz
c).
Angular frequency= w= 2πf
w= 2*π*2.7
w=16.9 rad/s
d)
Spring Constant:
As w=
⇒w²= k/m
⇒k= m*w²
⇒k= 0.628 * 16.9² N/m
⇒k=179.2 N/m
e)
The mass will have maximum speed when it passes through the mean position.
At mean position
Maximum elastic potential energy = Maximum kinetic energy
1/2 k A² = 1/2 m v² ( A is amplitude of oscillation)
⇒ v=
⇒ v=
\
⇒ v= 8.78 m/s
f)
Maximum force will be exerted on the block when it is at maximum distance.
F= k* A ( A is amplitude of oscillation)
F= 179.2 * 0.27 N
F= 48.4 N
The equations are analogous to that for linear movement:
acceleration = (final velocity - initial velocity) / time
acceleration = (3000 rpm - 0 rpm) / 2.0 s
a) acceleration = 1500 rpm/s or 25 rp(s^2)
For the displacement
displacement = initial velocity*time + 0.5*acceleration*time^2
displacement = (0)*(2 s) + (0.5)(25 rps^2)*(2 s)^2
b) displacement = 50 revolutions
Answer:
An engine with an electronic fuel injection system has high fuel pressure at idle because of high manifold vacuum. (option D)
Explanation:
Electronic fuel injection (EFI) system replaced carburetors back in the mid-1980s as the preferred method of supplying air and fuel to engines. The basic difference is that a carburetor uses intake vacuum and a pressure drop in the venturi, to siphon fuel from the carburetor fuel bowl into the engine. Whereas fuel injection system uses pressure to spray fuel directly into the engine.
However, under light load or at idle, a relatively high vacuum exists in the intake manifold. This means less fuel pressure is needed to spray a given volume of fuel through the injector. Under heavy load, engine vacuum drops to near zero.
Therefore, An engine with an electronic fuel injection system has high fuel pressure at idle because of high manifold vacuum.
Answer:
A. Particles in air move in circles as the wave moves forward.
B. Particles in air move forward but not backward as the wave moves
forward.
C. Particles in air move up and down as the wave moves forward.
✔ D. Particles in air move forward and backward as the wave moves
forward.
Explanation:
The waves transfer energy from the source of the sound, e.g. a drum, to its surroundings. Your ear detects sound waves when vibrating air particles cause your ear drum to vibrate. The bigger the vibrations the louder the sound.