Precisely around 1,800 miles below.
Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m
Answer: idk that is a tough one!
Explanation: that is a hard question IDK
Answer:
Hubble measured the velocity of the movement of galaxies by using Hubble's law states that galaxies located farthest from the center of the universe than those closest to the center.
Explanation:
Hubble's Law says that an object's velocity away from an observer is directly proportional to its distance from the observer. In other words, the farther away something is the faster it is moving away from us. The spectrum of a galaxy allows you to measure its redshift.