Answer:
The power for circular shaft is 7.315 hp and tubular shaft is 6.667 hp
Explanation:
<u>Polar moment of Inertia</u>
= 0.14374 in 4
<u>Maximum sustainable torque on the solid circular shaft</u>
=
= 3658.836 lb.in
= lb.ft
= 304.9 lb.ft
<u>Maximum sustainable torque on the tubular shaft</u>
=
= 3334.8 lb.in
= lb.ft
= 277.9 lb.ft
<u>Maximum sustainable power in the solid circular shaft</u>
=
= 4023.061 lb. ft/s
= hp
= 7.315 hp
<u>Maximum sustainable power in the tubular shaft</u>
=
= 3666.804 lb.ft /s
= hp
= 6.667 hp
Answer:
Planets are bodies of rock or gas that are named after ancient gods.
Asteroids and Meteoroids are made of rock or metal, which often collide with Earth.
The terrestrial planets are more like the Earth.
The Juno spacecraft is exploring the planet Jupiter.
Explanation:
The planets and other stars in our solar system were similarly baptized. The planets were named after ancient gods. Other stars were baptized with names chosen by scientists or according to their peculiarity. Most of the planets were baptized by ancient Chinese astronomers, and later, by Babylonians. But over time different civilizations changed the names of the planets.
An asteroid is a smaller body in the solar system, usually on the order of just a few hundred kilometers. Meteoroids, in turn, are fragments of rocks that form from comets and asteroids. The luminous effect is produced when fragments of celestial bodies ignite in contact with the Earth's atmosphere due to friction. Both asteroids and meteoroids are made of rock or metal, which often collide with Earth.
The terrestrial planets are the most similar to the earth. These planets are those formed mainly by rocks and metals, have a solid surface without the incidence of rings, as is the case with Mercury, Venus and Mars.
The Juno spacecraft is exploring the planet Jupiter. This probe has already given us several unprecedented discoveries about the largest gas giant in the Solar System, in addition to sending us sensational images showing the complex and beautiful atmosphere of the planet.
<h3><u>Answer;</u></h3>
Radius = 0.0818 m
Angular velocity = 2.775 × 10^7 rad/sec
<h3><u>Explanation;</u></h3>
The mass of proton m=1.6748 × 10^-27 kg;
Charge of electron e= 1.602 × 10^-19 C;
kinetic energy E= 2.7 MeV
= 2.7 × 10^6 × 1.602 × 10^-19 J;
= 4.32 × 10^-13 Joules
But; K.E =0.5m*v^2,
Hence v=√(2K.E/m)
Velocity = 2.27 × 10^7 m/s
Angular velocity, ω = v/r
Therefore; V = ωr
Hence; V = √(2K.E/m) = ωr
r= √(2E/m)/w = √E*√(2*m)/(eB)
= √E * √(2×1.6748×10^-27)/(1.602×10^-19 ×2.9)
but E = 4.32 × 10^-13 Joules
r = 0.0818 m
Angular speed
Angular velocity, ω = v/r , where r is the radius and v is the velocity
Therefore;
Angular velocity = 2.27 × 10^7 / 0.0818 m
= 2.775 × 10^7 rad /sec
Answer:
the answer to the question is a system of insulating element designed to control the path of electric current for a particular purpose
Answer:=14,160 kJ
Explanation: Let m1 and m2 be the initial and final amounts of mass within the tank, respectively. The steam properties are listed in the table below
Specific Internal SpecificTemp Pressure Volume Energy Enthalpy Quality Phase
C MPa m^3/kg kJ/kg kJ/kg
1 260 4.689 0.02993 2158 2298 0.7 Liquid Vapor Mixture
2 260 4.689 0.0422 2599 2797 1 Saturated Vapor
The mass initially contained in the tank is m1 = V/v1
m1 =0.85 m^3 /0.02993 m^3 /kg
= 28.4 kg
The mass finally contained in the tank is
m2 =V2/v
= 0.85 m^3 /0.0422 m^3 /kg
= 20.14 kg
The heat transfer is then
Qcv = m2u2 − m1u1 − he(m2 − m1)
Qcv = (20.14)(2599) − (28.4)(2158) − (2797)(20.14 − 28.4) = 14,160 kJ