Answer:
Explanation:
Given
Ship A velocity is 40 mph and is traveling 35 west of north
Therefore in 2 hours it will travel 
thus its position vector after two hours is

similarly B travels with 20 mph and in 2 hours
![=20\times 2=40 miles Its position vector[tex]r_B=40sin80\hat{i}+40cos80\hat{j}](https://tex.z-dn.net/?f=%3D20%5Ctimes%202%3D40%20miles%20%3C%2Fp%3E%3Cp%3EIts%20position%20vector%5Btex%5Dr_B%3D40sin80%5Chat%7Bi%7D%2B40cos80%5Chat%7Bj%7D)
Thus distance between A and B is



Velocity of A

Velocity of B

Velocity of A w.r.t B


Answer:
The average current that this cell phone draws when turned on is 0.451 A.
Explanation:
Given;
voltage of the phone, V = 3.7 V
electrical energy of the phone battery, E = 3.15 x 10⁴ J
duration of battery energy, t = 5.25 h
The power the cell phone draws when turned on, is the rate of energy consumption, and this is calculated as follows;

where;
P is power in watts
E is energy in Joules
t is time in seconds

The average current that this cell phone draws when turned on:
P = IV

Therefore, the average current that this cell phone draws when turned on is 0.451 A.
Answer:
A.
Explanation:
all i know is that sweat keeps your body from overheating
Answer:
ΔP = 14.5 Ns
I = 14.5 Ns
ΔF = 5.8 x 10³ N = 5.8 KN
Explanation:
The mass of the ball is given as 0.145 kg in the complete question. So, the change in momentum will be:
ΔP = mv₂ - mv₁
ΔP = m(v₂ - v₁)
where,
ΔP = Change in Momentum = ?
m = mass of ball = 0.145 kg
v₂ = velocity of batted ball = 55.5 m/s
v₁ = velocity of pitched ball = - 44.5 m/s (due to opposite direction)
Therefore,
ΔP = (0.145 kg)(55.5 m/s + 44.5 m/s)
<u>ΔP = 14.5 Ns</u>
The impulse applied to a body is equal to the change in its momentum. Therefore,
Impulse = I = ΔP
<u>I = 14.5 Ns</u>
the average force can be found as:
I = ΔF*t
ΔF = I/t
where,
ΔF = Average Force = ?
t = time of contact = 2.5 ms = 2.5 x 10⁻³ s
Therefore,
ΔF = 14.5 N.s/(2.5 x 10⁻³ s)
<u>ΔF = 5.8 x 10³ N = 5.8 KN</u>
Magnetic fields are areas where an object exhibits a magnetic influence. The fields affect neighboring objects along things called magnetic field lines. A magnetic object can attract or push away another magnetic object. You also need to remember that magnetic forces are NOT related to gravity. The amount of gravity is based on an object's mass, while magnetic strength is based on the material that the object is made of.