I would say B. A stable home and varied activities
Answer:
Soory
Explanation:
I really dont know but i will send you wait
Answer:
The box displacement after 6 seconds is 66 meters.
Explanation:
Let suppose that velocity given in statement represents the initial velocity of the box and, likewise, the box accelerates at constant rate. Then, the displacement of the object (
), in meters, can be determined by the following expression:
(1)
Where:
- Initial velocity, in meters per second.
- Time, in seconds.
- Acceleration, in meters per square second.
If we know that
,
and
, then the box displacement after 6 seconds is:

The box displacement after 6 seconds is 66 meters.
Answer:
V' = 0.84 m/s
Explanation:
given,
Linear speed of the ball, v = 2.85 m/s
rise of the ball, h = 0.53 m
Linear speed of the ball, v' = ?
rotation kinetic energy of the ball

I of the moment of inertia of the sphere

v = R ω
using conservation of energy


Applying conservation of energy
Initial Linear KE + Initial roational KE = Final Linear KE + Final roational KE + Potential energy



V'² = 0.7025
V' = 0.84 m/s
the linear speed of the ball at the top of ramp is equal to 0.84 m/s
Answer:
Explanation:
Let the velocity after first collision be v₁ and v₂ of car A and B . car A will bounce back .
velocity of approach = 1.5 - 0 = 1.5
velocity of separation = v₁ + v₂
coefficient of restitution = velocity of separation / velocity of approach
.8 = v₁ + v₂ / 1.5
v₁ + v₂ = 1.2
applying law of conservation of momentum
m x 1.5 + 0 = mv₂ - mv₁
1.5 = v₂ - v₁
adding two equation
2 v ₂= 2.7
v₂ = 1.35 m /s
v₁ = - .15 m / s
During second collision , B will collide with stationary A . Same process will apply in this case also. Let velocity of B and A after collision be v₃ and v₄.
For second collision ,
coefficient of restitution = velocity of separation / velocity of approach
.5 = v₃ + v₄ / 1.35
v₃ + v₄ = .675
applying law of conservation of momentum
m x 1.35 + 0 = mv₄ - mv₃
1.35 = v₄ - v₃
adding two equation
2 v ₄= 2.025
v₄ = 1.0125 m /s
v₃ = - 0 .3375 m / s