1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oee [108]
3 years ago
14

What must her minimum speed be just as she leaves the top of the cliff so that she will miss the ledge at the bottom, which is w

= 1.75 m wide and h = 8.00 m below the top of the cliff?
Physics
1 answer:
Yanka [14]3 years ago
8 0
<span>1.37 m/s Assuming her initial velocity is totally horizontal and her vertical velocity is only affected by gravity, let's first calculate how much time she has until she reaches the ledge 8.00 m below her. d = 1/2AT^2 8.00m = 1/2 * 9.8 m/s^2 * T^2 Solve for T 8.00 m = 4.9 m/s^2 * T^2 Divide both sides by 4.9 m/s^2 1.632653061 s^2 = T^2 Take square root of both sides 1.277753 s = T So we now know that she has 1.277753 seconds in which to reach a horizontal distance of 1.75 m. So how fast does she need to be going? 1.75 m / 1.277753 s = 1.369592 m/s Since we only have 3 significant figures in our data, round the result to 3 figures giving 1.37 m/s</span>
You might be interested in
Which one of the following parenting factors is associated with improved IQ scores in children?
lapo4ka [179]
I would say B. A stable home and varied activities 
5 0
3 years ago
If two charged balloons are 24cm apart and they feel a force of electrical repulsion of 20N, what would the force of electrical
OverLord2011 [107]

Answer:

Soory

Explanation:

I really dont know but i will send you wait

5 0
3 years ago
Q7) A box sliding with a velocity of 5 m/s accelerates at 2 m/s^2. How
grigory [225]

Answer:

The box displacement after 6 seconds is 66 meters.

Explanation:

Let suppose that velocity given in statement represents the initial velocity of the box and, likewise, the box accelerates at constant rate. Then, the displacement of the object (\Delta s), in meters, can be determined by the following expression:

\Delta s = v_{o}\cdot t+\frac{1}{2}\cdot a\cdot t^{2} (1)

Where:

v_{o} - Initial velocity, in meters per second.

t - Time, in seconds.

a - Acceleration, in meters per square second.

If we know that v_{o} = 5\,\frac{m}{s}, t = 6\,s and a = 2\,\frac{m}{s^{2}}, then the box displacement after 6 seconds is:

\Delta s = 66\,m

The box displacement after 6 seconds is 66 meters.

5 0
3 years ago
After you pick up a spare, your bowling ball rolls without slipping back toward the ball rack with a linear speed of 2.85 m/s. T
motikmotik

Answer:

V' = 0.84 m/s

Explanation:

given,

Linear speed of the ball, v = 2.85 m/s

rise of the ball, h = 0.53 m

Linear speed of the ball, v' = ?

rotation kinetic energy of the ball

KE_r = \dfrac{1}{2}I\omega^2

I of the moment of inertia of the sphere

I = \dfrac{2}{5}MR^2

 v = R ω

using conservation of energy

KE_r = \dfrac{1}{2}( \dfrac{2}{5}MR^2)(\dfrac{V}{R})2

KE_r = \dfrac{1}{5}MV^2

Applying conservation of energy

Initial Linear KE + Initial roational KE = Final Linear KE + Final roational KE + Potential energy

\dfrac{1}{2}MV^2 + \dfrac{1}{5}MV^2 = \dfrac{1}{2}MV'^2 + \dfrac{1}{5}MV'^2 + M g h

0.7 V^2 = 0.7 V'^2 + gh

0.7\times 2.85^2 = 0.7\times V'^2 +9.8\times 0.53

V'² = 0.7025

V' = 0.84 m/s

the linear speed of the ball at the top of ramp is equal to 0.84 m/s

6 0
3 years ago
Two identical cars A and B are at rest on a loading dock with brakes released. Car C, of a slightly different style but of the s
Nadusha1986 [10]

Answer:

Explanation:

Let the velocity after first collision be v₁ and v₂ of car A and B . car A will bounce back .

velocity of approach = 1.5 - 0 = 1.5

velocity of separation = v₁ + v₂

coefficient of restitution = velocity of separation / velocity of approach

.8 = v₁ + v₂ / 1.5

v₁ + v₂ = 1.2

applying law of conservation of momentum

m x 1.5 + 0 = mv₂ - mv₁

1.5 = v₂ - v₁

adding two equation

2 v ₂= 2.7

v₂ = 1.35 m /s

v₁ = - .15 m / s

During second collision , B will collide with stationary A . Same process will apply in this case also. Let velocity of B and A after collision be v₃ and v₄.

For second collision ,

coefficient of restitution = velocity of separation / velocity of approach

.5 = v₃ + v₄ / 1.35

v₃ + v₄ = .675

applying law of conservation of momentum

m x 1.35 + 0 = mv₄ - mv₃

1.35 = v₄ - v₃

adding two equation

2 v ₄= 2.025

v₄ = 1.0125 m /s

v₃ = - 0 .3375  m / s

3 0
3 years ago
Other questions:
  • An object is at rest on an inclined plane. In which direction does the static friction force act?
    14·1 answer
  • The death of a star occurs when its _____ stops
    12·1 answer
  • He had 5 dogs plus 2. Cats <br> How many did he have all together?
    9·2 answers
  • • What affects the speed of sound?
    12·1 answer
  • Season and date for this person
    11·2 answers
  • What is used to measure the amount of sunshine ​
    12·2 answers
  • Does dropping a magnet down a copper tube produce a current in the tube? explain your answer.
    14·1 answer
  • There is a constriction in a clinical thermometer give reasons​
    10·1 answer
  • A wave has a frequency of 12 Hz and a wavelength of 5 m. What is the wave speed?
    13·1 answer
  • Explain the mechanism by which an open fracture could result in shock.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!