Answer:
Option A. 39.2 m/s
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 4 s
Final velocity (v) =?
v = u + gt
Since the initial velocity (u) is 0, the above equation becomes:
v = gt
Thus, inputting the value of g and t, we can obtain the value of v as shown below:
v = 9.8 × 4
v = 39.2 m/s
Therefore, the velocity of the ball at 4 s is 39.2 m/s.
Answer:
Explanation:
Samantha walks along a horizontal path in the direction shown the curved path is a semi circle with a radius of 2 m while the horizontal part is for me what is the magnitude of displacement
Displacement is given by the straight line distance between P and Q. Displacement will be length of straight line joining P and Q
a semi circle with a radius of 2 m
Length of this straight line=4+diameter
=4+(2*2)
=8 m
Answer:
The answer is A
Explanation:
It is A because your body heat is warmer than the banana and when you hold it the heat is transferring over.
Answer:
182.28 W
Explanation:
Here ,
m = 7.30 Kg
distance , d= 28.0 m
time , t = 11.0 s
average power supplied = change in potential energy/time
average power supplied = m×g×d/time
average power supplied = 7.30×9.81×28/11
average power supplied = 182.28 W
the average power supplied is 182.28 W
The acceleration should 5.4 m/s^2