1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga nikolaevna [1]
2 years ago
7

A pail in a water well is hoisted by means of a frictionless winch, which consists of a spool and a hand crank. When Jill turns

the winch at her fastest water-fetching rate, she can lift the pail the 28.0 m to the top in 11.0 s. Calculate the average power supplied by Jill's muscles during the upward ascent. Assume the pail of water when full has a mass of 7.30 kg.
Physics
1 answer:
Sveta_85 [38]2 years ago
6 0

Answer:

182.28 W

Explanation:

Here ,

m = 7.30 Kg

distance , d= 28.0 m

time , t = 11.0 s

average power supplied = change in potential energy/time

average power supplied = m×g×d/time

average power supplied = 7.30×9.81×28/11

average power supplied = 182.28 W

the average power supplied is  182.28 W

You might be interested in
What is the weight of a 42 kg object if the object was on the moon?
sveticcg [70]
(1.6 m/s²)(42 Kg)= 80 N
4 0
3 years ago
A slingshot is used to launch a stone horizontally from the top of a 20.0 meter cliff. The stone lands 36.0 meters away.
alisha [4.7K]
A) 

     It is a launch oblique, therefore the initial velocity in the vertical direction is zero. Space Hourly Equation in vertical, we have:

S=S_{o}+v_{o}t+ \frac{at^2}{2} \\ 20= \frac{10t^2}{2} \\ t=2s
 
     Through Definition of Velocity, comes:

\Delta v=  \frac{\Delta S}{\Delta t}  \\ v_x= \frac{36}{2}  \\ \boxed {v_{x}=18m/s}


B)
 
     Using the Velocity Hourly Equation in vertical direction, we have:

v_{y}=v_{y_{o}}+gt \\ v_{y}=10\times2 \\ \boxed {v_{y}=20m/s}
  
     The angle of impact is given by:

cos(\theta) =\frac{v_{x}}{v_{y}}  \\ cos(\theta) = \frac{18}{20}  \\ cos(\theta) =0.9 \\ arccos(0.9)=\theta \\ \boxed {\theta \approx 25.84}


If you notice any mistake in my english, please let me know, because i am not native.

7 0
3 years ago
Read 2 more answers
The center of the Hubble space telescope is 6940 km from Earth’s center. If the gravitational force between Earth and the telesc
Law Incorporation [45]
The gravitational force between two objects is given by:
F=G \frac{m_1 m_2}{r^2}
where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the separation between the two objects

The distance of the telescope from the Earth's center is r=6940 km=6.94 \cdot 10^6 m, the gravitational force is F=9.21 \cdot 10^4 N and the mass of the Earth is m_1=5.98 \cdot 10^{24} kg, therefore we can rearrange the previous equation to find m2, the mass of the telescope:
m_2 =  \frac{Fr^2}{Gm_1}= \frac{(9.21 \cdot 10^4 N)(6.94\cdot 10^6)^2}{(6.67\cdot 10^{-11})(5.98\cdot 10^{24})} =11121 kg
6 0
3 years ago
Read 2 more answers
Please help me with this physics prooblem
zaharov [31]

Take the missile's starting position to be the origin. Assuming the angles given are taken to be counterclockwise from the positive horizontal axis, the missile has position vector with components

x=v_0\cos20.0^\circ t+\dfrac12a_xt^2

y=v_0\sin20.0^\circ t+\dfrac12a_yt^2

The missile's final position after 9.20 s has to be a vector whose distance from the origin is 19,500 m and situated 32.0 deg relative the positive horizontal axis. This means the final position should have components

x_{9.20\,\mathrm s}=(19,500\,\mathrm m)\cos32.0^\circ

y_{9.20\,\mathrm s}=(19,500\,\mathrm m)\sin32.0^\circ

So we have enough information to solve for the components of the acceleration vector, a_x and a_y:

x_{9.20\,\mathrm s}=\left(1810\,\dfrac{\mathrm m}{\mathrm s}\right)\cos20.0^\circ(9.20\,\mathrm s)+\dfrac12a_x(9.20\,\mathrm s)^2\implies a_x=21.0\,\dfrac{\mathrm m}{\mathrm s^2}

y_{9.20\,\mathrm s}=\left(1810\,\dfrac{\mathrm m}{\mathrm s}\right)\sin20.0^\circ(9.20\,\mathrm s)+\dfrac12a_y(9.20\,\mathrm s)^2\implies a_y=110\,\dfrac{\mathrm m}{\mathrm s^2}

The acceleration vector then has direction \theta where

\tan\theta=\dfrac{a_y}{a_x}\implies\theta=79.2^\circ

5 0
3 years ago
How do intermolecular forces differ from intramolecular forces
kicyunya [14]

Answer:

Explanation:

Intramolecular forces is a strong bond that helps to bond atoms together while intermolecular forces are weak bond that are present between molecules.

8 0
3 years ago
Other questions:
  • Th answer is "electric attraction is a force that can act at a distance."
    9·1 answer
  • A boy flies a kite with the string at a 30 degree angle to the horizontal. The tension in the string is 4.5N .
    7·1 answer
  • Which structure is responsible for breaking down sugar molecules in order to supply energy to the cell? A B C D
    9·1 answer
  • at a major league baseball game, you are sitting a distance 52 meters from home plate. how much time passes between seeing josh
    6·1 answer
  • A solar collector receives solar radiation at a rate of 0.315 kW per m²and delivers the heat to a storage unit whose temperature
    14·1 answer
  • A system consists of two charges,
    9·1 answer
  • Copy of AL
    15·1 answer
  • A solid ball has a radius of 2cm and a length of 7cm. It has a density of 3.1g/cm3
    13·1 answer
  • What would make oppositely charged objects attract each other more?
    8·1 answer
  • A proton moves in the negative x-direction through a uniform magnetic field in the negative y-direction what is the direction of
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!