Answer: 
Explanation:
Given
Length of plank is 1.6 m
Force
is applied on the left side of plank
Force
is applied 43 cm from the left end O.
Mass of the plank is 
for equilibrium
Net torque must be zero. Taking torque about left side of the plank

Net vertical force must be zero on the plank

The law of conservation of momentum tells us that momentum
is conserved, therefore total initial momentum should be equal to total final
momentum. In this case, we can expressed this mathematically as:
mA vA + mB vB = m v
where, m is the mass in kg, v is the velocity in m/s
since m is the total mass, m = mA + mB, we can write the
equation as:
mA vA + mB vB = (mA + mB) v
furthermore, car B was at a stop signal therefore vB = 0,
hence
mA vA + 0 = (mA + mB) v
1800 (vA) = (1800 + 1500) (7.1 m/s)
<span>vA = 13.02 m/s</span>
Answer:
His average speed was 10.3199 m/s.
Explanation:
The piece of paper has less mass and will glide down the window, whereas the textbook will go straight to the ground. Since the textbook has more mass and less ways of it being able to 'glide' the textbook will hit the ground first.
Answer:
The initial velocity is 50 m/s.
(C) is correct option.
Explanation:
Given that,
Time = 10 sec
For first half,
We need to calculate the height
Using equation of motion

....(I)
For second half,
We need to calculate the time
Using equation of motion



Put the value of h from equation (I)


According to question,


Put the value of t₁ and t₂



Here, g = 10
The initial velocity is


Hence, The initial velocity is 50 m/s.