Answer:
The car's angular speed is
.
Explanation:
Angular velocity is usually measured with
, so I'm going to use that to answer your question.
The relationship between tangential velocity and angular velocity (ω) is given by:

Using the values from the question, we get:


Therefore, the car's angular speed is
.
Hope this helped!
Mass/volume is density so it’s 562g/72cm^3 so it’s roughly 7.805g per cubic centimeter
In this question, you're determining the time (t) taken for an object to fall from a distance (d).
The equation to represent this is:
Time equals the square root of 2 times the distance divided by the gravitational force of earth.
In equation from it looks like this (there isn't an icon to represent square root so just pretend like there's a square root there):
t = 2d/g (square-rooted)
d = 8,848m and g = 9.8m/s
Now plug in the information we have:
t = 2 x 8,848m/9.8m/s (square-rooted)
The first step is to multiply 2 times 8,848m:
t = 17,696m/9.8m/s (square-rooted)
Now divide 9.8m/s by 17,696m (note that the two m's (meters) cancels out leaving you with only s (seconds):
t = 1805.72s (square-rooted)
Now for the last step, find the square root of the remaining number:
t = 42.5s
So the time it takes the ball to drop from the height (distance) of 8,848 meters, and falling with the gravitational pull of 9.8 meters per second is 42.5 seconds.
I hope this helps :)
Answer:
1.because of the heat produced by the socat
2. they should have control how they placed the heater
3. because the water is to much
4.because is different from the question
5. because that is how the question is