Answer:
The displacement was 320 meters.
Explanation:
Assuming projectile motion and zero initial speed (i.e., the object was dropped, not thrown down), you can calculate the displacement using the kinematic equation:

The displacement was 320 meters.
The frequency of a simple harmonic oscillator such as a spring-mass system is given by

where
k is the spring constant
m is the mass attached to the spring.
Re-arranging the formula, we get:

and since we know the constant of the spring:

and the frequency of oscillation:
f=1.00 Hz
we can find the value of the mass attached to it:
Answer:
The answer to the question is
Its maximum speed is 1.54 m/s
Explanation:
Work done = Kinetic energy
0.5·m·v² = 0.5·k·x²
Where
m = mass
v = velocity
k = spring constant
x = extension of the spring
We note that Force F is given by
F = m·a
Where
a = acceleration due to gravity
= 0.153×9.8 = 1.4994 N
Equating the work done by the force to the work done on the spring gives
Work done = Force × Distance = 1.4994×x = 0.5×k÷x² = 0.5×24.7×x²
x = 1.4994÷12.35 = 0.121 m
Substituting the value of x into the equation below gives
0.5·m·v² = 0.5·k·x²
0.5×0.153×v² = 12.35×0.121²
v² = 0.182÷0.0765 = 2.379
v = 1.54 m/s
Answer:
are known as hydrocarbons. the saturated hydrocarbons are known as alkanes.
No because Newton’s first law is inertia