1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
horrorfan [7]
2 years ago
11

A

Physics
1 answer:
loris [4]2 years ago
7 0

Hi

The answer to this question is B. Reaction

You might be interested in
A projectile is launched straight up from a height of 960 feet with an initial velocity of 64 ft/sec. Its height at time t is h(
Natasha2012 [34]

Answer:

a) t=2s

b) h_{max}=1024ft

c) v_{y}=-256ft/s

Explanation:

From the exercise we know the initial velocity of the projectile and its initial height

v_{y}=64ft/s\\h_{o}=960ft\\g=-32ft/s^2

To find what time does it take to reach maximum height we need to find how high will it go

b) We can calculate its initial height using the following formula

Knowing that its velocity is zero at its maximum height

v_{y}^{2}=v_{o}^{2}+2g(y-y_{o})

0=(64ft/s)^2-2(32ft/s^2)(y-960ft)

y=\frac{-(64ft/s)^2-2(32ft/s^2)(960ft)}{-2(32ft/s^2)}=1024ft

So, the projectile goes 1024 ft high

a) From the equation of height we calculate how long does it take to reach maximum point

h=-16t^2+64t+960

1024=-16t^2+64t+960

0=-16t^2+64t-64

Solving the quadratic equation

t=\frac{-b±\sqrt{b^{2}-4ac}}{2a}

a=-16\\b=64\\c=-64

t=2s

So, the projectile reach maximum point at t=2s

c) We can calculate the final velocity by using the following formula:

v_{y}^{2}=v_{o}^{2}+2g(y-y_{o})

v_{y}=±\sqrt{(64ft/s)^{2}-2(32ft/s^2)(-960ft)}=±256ft/s

Since the projectile is going down the velocity at the instant it reaches the ground is:

v=-256ft/s

5 0
3 years ago
Problem 2.26 MasteringPhysics 10 of 16 Problem 2.26 When striking, the pike, a predatory fish, can accelerate from rest to a spe
cluponka [151]

final velocity = initial velocity + (acceleration x time) <span>
3.9 m/s = 0 m/s + (acceleration x 0.11 s) 
3.9 m/s / 0.11 s = acceleration 
30.45 m/s^2 = acceleration 

distance = (initial velocity x time) + 1/2(acceleration)(time^2) 
distance (0 m/s x 0.11 s) + 1/2(30.45 m/s^2)(0.11s ^2) 
<span>distance = 0.18 m</span></span>

6 0
3 years ago
Read 2 more answers
What is the difference between kinetic energy and potential energy​
uranmaximum [27]

Answer:

Kinetic energy is the energy of a moving body while potential energy is the energy by vutue of it's position

8 0
3 years ago
Engineers can determine properties of a structure that is modeled as a damped spring oscillator, such as a bridge, by applying a
Kazeer [188]

The value of spring constant and the oscillator's damping constant is

K= 6605.667008, b= 0.002884387

Explanation:

For Weakly damping spring oscillator

K/m = W_0^2     (at resonance)

K= mW_0^2

=0.206 * ( 2π * 28.5) ^2

=0.206 * (2π)^2 * (28.5)^2

K= 6605.667008

F = - bV

b= -F/V = -F/ -W_0 * m

=F/W_0 * m

= 0.438N / 2π * 28.5 * 0.848

b= 0.002884387

8 0
3 years ago
Two identical strings, of identical lengths of 2.00 m and linear mass density of μ=0.0065kg/m, are fixed on both ends. String A
kolezko [41]

Answer:

beat frequency = 13.87 Hz

Explanation:

given data

lengths l = 2.00 m

linear mass density μ = 0.0065 kg/m

String A is under a tension T1 = 120.00 N

String B is under a tension T2 = 130.00 N

n = 10 mode

to find out

beat frequency

solution

we know here that length L is

L = n × \frac{ \lambda }{2}      ........1

so  λ = \frac{2L}{10}  

and velocity is express as

V = \sqrt{\frac{T}{\mu } }    .................2

so

frequency for string A = f1 = \frac{V1}{\lambda}

f1 = \frac{\sqrt{\frac{T}{\mu } }}{\frac{2L}{10}}

f1 = \frac{10}{2L} \sqrt{\frac{T1}{\mu } }      

and

f2 = \frac{10}{2L} \sqrt{\frac{T2}{\mu } }

so

beat frequency is = f2 - f1

put here value

beat frequency = \frac{10}{2*2} \sqrt{\frac{130}{0.0065}}  - \frac{10}{2*2} \sqrt{\frac{120}{0.0065} }

beat frequency = 13.87 Hz

6 0
3 years ago
Other questions:
  • Which is larger, the Sun's pull on Earth or Earth's pull on the Sun?
    15·1 answer
  • What happens to Earth’s temperature as cloud cover increases?
    9·2 answers
  • A 25 kg ball is thrown into the air when thrown it's going 10 m/s calculate how high it travels
    7·1 answer
  • What type of landform is depicted here? a. a mountain b. a depression c. a valley​
    15·1 answer
  • Th e heat capacity of air is much smaller than that of water, and relatively modest amounts of heat are needed to change its tem
    12·2 answers
  • Nellie pulls on a 10kg wagon with a constant horizontal force of 30N. If there are no other horizontal gorces what is the wagons
    9·1 answer
  • Two musicians are playing the same instruments. The first one emits the sound with correct wavelength 58 cm while the second one
    5·1 answer
  • A reasonable estimate of the moment of inertia of an ice skater spinning with her arms at her sides can be made by modeling most
    7·1 answer
  • A man pushed a cabinet with a force of 200N. What is the mass of the cabinet that accelerates 4 m/s/s?​
    13·1 answer
  • A mystery fluid has a density of 6.45kg/m^3 . If 2.34 kg are put into a container, what is the volume of the sample?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!