Answer:
280 N
Explanation:
Applying Newton's third second law of motion,
F = m(v-u)/t................... Equation 1
Where F = Magnitude of the average force on the ball during contact, v = final velocity of the ball, u = initial velocity of the ball, t = time of contact of the ball and the wall.
Note: Let the direction of the initial velocity of the ball be positive
Given: m = 4 kg, u = 3.0 m/s, v = -4.0 m/s (bounce off), t = 0.1 s
Substitute into equation 1
F = 4(-4-3)/0.1
F = 4(-7)/0.1
F = -28/0.1
F = -280 N.
Note: The negative sign tells that the force on the ball act in opposite direction to the initial motion of the ball
Answer:
d.
Explanation:
have a full 8 electrons on the outermost ring
Answer:

Explanation:
For this exercise we must use the principle of conservation of energy
starting point. The proton very far from the nucleus
Em₀ = K = ½ m v²
final point. The point where the proton is stopped (v = 0)
Em_f = U = q V
where the potential is
V = k Ze / r²
Let us consider that all the charge of the nucleus is in the center, therefore r is the distance from this point to the proton that is approaching
Energy is conserved
Em₀ = Em_f
½ m v² = e (
)
with this expression we can find the closest approach distance (r)
Answer:
A. 4.47 m/s
Explanation:
As the ball oscillates, it mechanical energy, aka the total kinetic and elastics energy stays the same. For the ball to be at maximum speed, its elastic energy i 0 and vice versa. When the ball is at rest, its kinetic energy is 0 and its elastic energy is at maximum at 50 cm, or 0.5 m
1500 g = 1.5 kg





