Answer:
Option (e)
Explanation:
A = 45 cm^2 = 0.0045 m^2, d = 0.080 mm = 0.080 x 10^-3 m,
Energy density = 100 J/m
Let Q be the charge on the plates.
Energy density = 1/2 x ε0 x E^2
100 = 0.5 x 8.854 x 10^-12 x E^2
E = 4.75 x 10^6 V/m
V = E x d
V = 4.75 x 10^6 x 0.080 x 10^-3 = 380.22 V
C = ε0 A / d
C = 8.854 x 10^-12 x 45 x 10^-4 / (0.080 x 10^-3) = 4.98 x 10^-10 F
Q = C x V = 4.98 x 10^-10 x 380.22 = 1.9 x 10^-7 C
Q = 190 nC
Answer:
180.4 m
Explanation:
The package in relation to the point where it was released falls a certain distance that is calculated by applying the horizontal motion formulas , as the horizontal speed of the plane and the height above the ground are known, the time that It takes the package to reach its destination and then the horizontal distance (x) is calculated from where it was dropped, as follows:

h = 100 m
x =?
Height formula h:

Time t is cleared:


t = 4.51 sec
Horizontal distance formula x:

x = 40 m / sec x 4.51 sec
x = 180.4 m
Answer:
B: Process #1: Energy is decreasing Process#2: Energy is increasing
Answer:
The distance the piece travel in horizontally axis is
L=3.55m
Explanation:





Now the angular velocity is the blade speed so:
assuming no air friction effects affect blade piece:
time for blade piece to fall to floor

Now is the same time the piece travel horizontally

blade piece travels HORIZONTALLY = (24.5)(0.397) = 9.73 m ANS