1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergio [31]
3 years ago
14

In an oscillating lc circuit, when 75.0% of the total energy is stored in the inductor's magnetic field, (a) what multiple of th

e maximum charge is on the capacitor and (b) what multiple of the maximum current is in the inductor?
Physics
1 answer:
olga2289 [7]3 years ago
4 0
<span>(a) E = ½ Q²/C, so .. (b) E(max) = ½Li² (i=current), so .</span>
You might be interested in
A coyote can locate a sound source with good accuracy by comparing the arrival times of a sound wave at its two ears. Suppose a
jeka94

Answer:

a)  t_l - t_r = 12.54 us

b)  (t_l - t_r) / T = 0.0157  

Explanation:

Given:

- Frequency of source f = 1250 Hz

- Distance from source to right ear d_r = 2.6 m

- Distance from source to left ear d_l = ?

- Separation between ears s = 0.15 m

Find:

a. What is the difference in the arrival time of the sound at the left ear and the right ear?

b. What is the ratio of this time difference to the period of the sound wave?

Solution:

- Apply Pythagoras theorem to calculate the distance d_l from source to left ear:

                                      d_l = sqrt ( 2.6^2 + 0.15^2)

                                      d_l = sqrt ( 6.7825 )

                                      d_l = 2.6043 m

- The time deference can be calculated from a simple distance - speed formula:

                                      t_l - t_r = (1 / v) * ( d_l - d_r)

Where, v = 343 m/s speed of sound in air:

                                      t_l - t_r = (1 / 343) * ( 2.6043 - 2.6)  

                                      t_l - t_r = ( 0.0043 / 343 )

                                      t_l - t_r = 12.54 us

- Now we compute the Time period of the sound wave:

                                      T = 1 / f

                                      T = 1 / 1250 = 8*10^-4 s

- The ratio of differential time to Time period T is:

                                      (t_l - t_r) / T = 12.54 * 10^-6 / 8*10^-4

                                      (t_l - t_r) / T = 0.0157  

3 0
3 years ago
Un pintor de 75.0 kg sube por una escalera de 2.75 m que está inclinada contra una pared vertical. La escalera forma un ángulo d
dezoksy [38]

Answer:

Work done, W = 1786.17J

Explanation:

The question says "A 75.0-kg painter climbs a 2.75-m ladder that is leaning against a vertical wall. The ladder makes an angle of 30.0 ° with the wall. How much work (in Joules) does gravity do on the painter? "

Mass of a painter, m = 75 kg

He climbs 2.75-m ladder that is leaning against a vertical wall.

The ladder makes an angle of 30 degrees with the wall.

We need to find the work done by the gravity on the painter.

The angle between the weight of the painter and the displacement is :

θ = 180 - 30

= 150°

The work done by the gravity is given by :

W=Fd\cos\theta\\\\=75\times 10\times 2.75\times \cos30\\\\=1786.17\ J

Hence, the required work done is 1786.17 J.

6 0
2 years ago
I’ll give brainliest if it’s correct ;-;z
BlackZzzverrR [31]

Explanation:

what is the question? could you pls provide it

6 0
2 years ago
How are points made in soccer ?
Anit [1.1K]
A- by kicking the ball into the net/goal
5 0
3 years ago
Read 2 more answers
In 2005 astronomers announced the discovery of a large black hole in the galaxy Markarian 766 having clumps of matter orbiting a
IRISSAK [1]

A. 4.64\cdot 10^{11}m

The orbital speed of the clumps of matter around the black hole is equal to the ratio between the circumference of the orbit and the period of revolution:

v=\frac{2\pi r}{T}

where we have:

v=30,000 km/s = 3\cdot 10^7 m/s is the orbital speed

r is the orbital radius

T=27 h \cdot 3600 =97,200 s is the orbital period

Solving for r, we find the distance of the clumps of matter from the centre of the black hole:

r=\frac{vT}{2\pi}=\frac{(3\cdot 10^7 m/s)(97200 s)}{2\pi}=4.64\cdot 10^{11}m

B. 6.26\cdot 10^{36}kg, 3.13\cdot 10^6 M_s

The gravitational force between the black hole and the clumps of matter provides the centripetal force that keeps the matter in circular motion:

m\frac{v^2}{r}=\frac{GMm}{r^2}

where

m is the mass of the clumps of matter

G is the gravitational constant

M is the mass of the black hole

Solving the formula for M, we find the mass of the black hole:

M=\frac{v^2 r}{G}=\frac{(3\cdot 10^7 m/s)^2(4.64\cdot 10^{11} m)}{6.67\cdot 10^{-11}}=6.26\cdot 10^{36}kg

and considering the value of the solar mass

M_s = 2\cdot 10^{30}kg

the mass of the black hole as a multiple of our sun's mass is

M=\frac{6.26\cdot 10^{36} kg}{2\cdot 10^{30} kg}=3.13\cdot 10^6 M_s

C. 9.28\cdot 10^9 m

The radius of the event horizon is equal to the Schwarzschild radius of the black hole, which is given by

R=\frac{2MG}{c^2}

where M is the mass of the black hole and c is the speed of light.

Substituting numbers into the formula, we find

R=\frac{6.26\cdot 10^{36} kg)(6.67\cdot 10^{-11})}{(3\cdot 10^8 m/s)^2}=9.28\cdot 10^9 m

8 0
3 years ago
Other questions:
  • Calculate the mass defect of the helium nucleus 32he. the mass of neutral 32he is given by mhe=3.016029amu. express your answer
    14·1 answer
  • A light beam shines through a slit and illuminates a distant screen. The central bright fringe on the screen is 1.00 cm wide, as
    7·1 answer
  • Which one gives the feeling of heaviness in the case of a kilogram of cotton or a kilogram of lead? Why?​
    13·1 answer
  • Periodic trends vary as we move across the periodic table. In general, as you move across a row (from left to right) in the peri
    12·2 answers
  • True or false
    13·1 answer
  • What is the velocity?
    7·1 answer
  • A 75.0 Ohm resistor uses 0.285 W of power. What is the voltage across the resistor?
    12·1 answer
  • With what force will a car hit a tree if the car has a mass of 3,550 kg and it is accelerating at a rate of 2.5 m/s2 on a snowy
    6·1 answer
  • Motion with constant acceleration CER lab report <br><br> Can someone help!!
    14·1 answer
  • Which is required for
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!