Explanation:
Assuming the wall is frictionless, there are four forces acting on the ladder.
Weight pulling down at the center of the ladder (mg).
Reaction force pushing to the left at the wall (Rw).
Reaction force pushing up at the foot of the ladder (Rf).
Friction force pushing to the right at the foot of the ladder (Ff).
(a) Calculate the reaction force at the wall.
Take the sum of the moments about the foot of the ladder.
∑τ = Iα
Rw (3.0 sin 60°) − mg (1.5 cos 60°) = 0
Rw (3.0 sin 60°) = mg (1.5 cos 60°)
Rw = mg / (2 tan 60°)
Rw = (10 kg) (9.8 m/s²) / (2√3)
Rw = 28 N
(b) State the friction at the foot of the ladder.
Take the sum of the forces in the x direction.
∑F = ma
Ff − Rw = 0
Ff = Rw
Ff = 28 N
(c) State the reaction at the foot of the ladder.
Take the sum of the forces in the y direction.
∑F = ma
Rf − mg = 0
Rf = mg
Rf = 98 N
Work is force times distance. If there's no distance, there's no work being done.
Answer:
a = 1.16 m/s²
Explanation:
In order to find the acceleration of the ball we will use 3rd equation of motion.
2as = Vf² - Vi²
where,
a = acceleration = ?
s = displacement = 21.9 m
Vf = Final Velocity = 7.14 m/s
Vi = Initial Velocity = 0 m/s (Since, ball starts from rest)
Therefore, using the values, we get:
2a(21.9 m) = (7.14 m/s)² - (0 m/s)²
a = (50.97 m²/s²)/(43.8 m)
<u>a = 1.16 m/s²</u>
water, if this were to occur u would want to immediately wash it with well water.
Reason: Strong bases react with the oils in your skin to produce a soapy feeling layer. Rinse until well after that feeling is gone.
Electrical current is measured using the ampere.