Answer:
The molar mass of copper (II) nitrate is 187.5 g/mol.
Explanation:
The molar mass is the mass of all the atoms in a molecule in grams per mole. To calculate the molar mass of a molecule, we first obtain the atomic weights from the individual elements in a periodic table. We then count the number of atoms and multiply it by the individual atomic masses.
1) CH2 (gas) + Br (solid) -> BrC (solid) + H2 (gas)
2) a) CH4 + Br2 -> CH3Br + HBr
2) b) methane + bromine is substitution because one hydrogen atom from methane is replaced by one bromine atom. addition reaction takes place when one molecule combines with another to form a larger molecule so therefore a molecule from X and bromine combine to form XBr.
The answer to this question would be: 3.125%
Half-life is the time needed for a radioactive molecule to decay half of its mass. In this case, the strontium-89 is already gone past 5 half lives. Then, the percentage of the mass left after 5 half-lives should be:
100%*(1/2^5)= 100%/32=3..125%
Vitamin K and potassium are essential micronutrients the body needs to develop and function properly. The two share some things in common, but they’re not the same.
Each has a unique set of properties and purposes. Unlike vitamin K, potassium is not a vitamin. Rather, it’s a mineral.
On the periodic table, the chemical symbol for potassium is the letter K. Thus, people sometimes confuse potassium with vitamin K.
This article highlights some of the main similarities and differences between vitamin K and potassium.