Answer:
See explaination
Explanation:
The electrons geometry shows the special distribution of the electrons around of the central atom of the molecule.
The molecular geometry shows the special distribution of the atoms that form the molecule.
Please kindly check attachment for further solution.
Answer:
7.5 M
Explanation:
In order to find a solution's molar concentration, or molarity, you need to determine how many moles of solute, which in your case is sodium sulfate,
Na
2
SO
4
, you get in one liter of solution.
That is how molarity was defined -- the number of moles of solute in one liter of solution.
So, you know that you have
0.090
moles of solute in
12 mL
of solution. Your goal here will be to scale up this solution by using this information as a conversion factor to help you determine the number of moles of solute present in
Answer:
Gas state
Explanation:
Gas particles spread out to fill a container evenly, unlike solids and liquids.
Number of atom in one mole = 6.022 × 10²³
So, in 3.5 moles, it would be: = 6.022 × 10²³ * 3.5 = 2.1 × 10²⁴
In short, Your Answer would be 2.1 × 10²⁴ atoms
Hope this helps!
Answer:
Molarity is 0.99 M
Explanation:
5.21% by mass, is a sort of concentration which shows the mass of solute in 100 g of solution.
Molarity is a sort of concentration that indicates the moles of solute in 1 L of solution (mol/L)
Let's find out the volume of solution by density.
Solution density = Solution mass / Solution volume
1.15 g/mL = 100 g / Solution volume
Solution volume = 100 g / 1.15 g/mL → 86.9 mL
We must have the volume of solution in L, so let's convert it.
86.9 mL / 1000 = 0.0869 L
Now, we have to determine the moles of solute (urea)
5.21 g . 1 mol / 60 g = 0.0868 moles
Mol/L = Molarity → 0.0868 moles / 0.0869L = 0.99 M