The volume of chlorine required is 7.71 L.
The reaction between phosphorus and chlorine is:
2P + 5Cl₂→ 5PCl₅
Therefore, 2 moles of P requires 5 moles of chlorine to react with it.
Given mass of P =3.39 g
Molar mass of P=30.97 g/mol
No. of moles of P = given mass/ molar mass = 3.39 / 30.97 = 0.109 moles
2 moles of P requires 5 moles of chlorine
0.109 moles of P will require 0.109 x 5/2 = 0.2725 moles of chlorine
According to ideal gas equation
PV=nRT
2.04 x V = 0.2725 x 0.0821 x 703
V = 0.2725 x 0.0821 x 703 / 2.04
V = 7.71L
Learn more about ideal gas equation here:
brainly.com/question/3637553
#SPJ4
Radio waves, Micro waves, infrared, visible light, ultra violet, x-rays, and Gamma rays.
Explanation:
To find the amount of product that would be formed from two or more reactants, we need to follow the following steps;
- Find the number of moles of the given reactants.
- Then proceed to determine the limiting reactant. The limiting reactant is the one in short supply which determines the extent of the reaction.
- Use the number of moles of the limiting reactant to find the number of moles of the product.
- Then use this number of moles to find the mass of the product
Useful expression:
Mass = number of moles x molar mass
Answer:
Modern whales evolved by natural selection over long time periods through descent from common ancestors
Explanation:
According to the evolutionary theory proposed by Darwin, natural selection is a biological process by which organisms adapt and change in response to their environment. In this case, ancient whales that were better suited to environmental conditions survived and produced more offspring than non-adapted individuals. In consequence, predominant adaptive traits observed in modern whales were favored by natural selection in the past, while unsuccessful phenotypes progressively disappeared.
Explanation:
Each atom type contains the same number of protons. Chemical bonds link elements together to form more complex molecules called compounds. A compound consists of two or more types of elements held together by covalent or ionic bonds