Answer:
(a) The distance-time graph for an object with uniform speed is giving by a straight line sloped graph with a constant positive or negative gradient as shown in the attached diagram
(b) The distance-time graph for an object with non-uniform speed is giving by a curved line sloped graph with varying gradient as shown in the attached diagram
(c) The velocity-time graph for a car with uniform motion is giving by a horizontal line graph at the speed of constant motion with a zero gradient as shown in the attached diagram
(d) The velocity-time graph for a car moving with uniform acceleration is giving by a straight line sloped graph with a constant positive or negative gradient as shown in the attached diagram
(e) The velocity-time graph for a car moving with non-uniform acceleration is giving by a curved line sloped graph with varying gradient as shown in the attached diagram
(f) According to Newton's first law of motion, an object at rest will remain at rest with no motion unless acted by a force, an therefore, will have no motion with time
Explanation:
Answer:
The student hears the wave that is transmitted by the desk
Explanation:
Mechanical waves need a material medium to be able to be transmitted, in the case of sound waves, one of the most common media is air, but it is also transmitted in other media in this case, stationery is transmitted.
The student hears the wave that is transmitted by the desk
The speed of the wave is proportional to the density of the material, so the wave that the student hears arrives much faster through the desk than through the air
(1) You must find the point of equilibrium between the two forces,
<span>G * <span><span><span>MT</span><span>ms / </span></span><span>(R−x)^2 </span></span>= G * <span><span><span>ML</span><span>ms / </span></span><span>x^2
MT / (R-x)^2 = ML / x^2
So,
x = R * sqrt(ML * MT) - ML / (MT - ML)
R = is the distance between Earth and Moon.
</span></span></span>The result should be,
x = 3.83 * 10^7m
from the center of the Moon, and
R - x = 3.46*10^8 m
from the center of the Earth.
(2) As the distance from the center of the Earth is the number we found before,
d = R - x = 3.46*10^8m
The acceleration at this point is
g = G * MT / d^2
g = 3.33*10^-3 m/s^2
Answer:
2 m/s^2
Explanation:
a = v^2/r
a = (10m/s)^2 / 50m
a = 2 m/s^2
Leave a like and mark brainliest if this helped
Leave a like and mark brainliest if this helped
Vf = 0 + 3.5•8.7
= 30.45 m/s