D = 1/2 g t^2. It works out to 44.1 meters.
To solve this problem we will apply the concepts related to the Doppler Effect, defined as the change in apparent frequency of a wave produced by the relative movement of the source with respect to its observer. Mathematically it can be written as

Here,
= Frequency of the source
= Speed of the sound
= Speed of source
Now the velocity we have that


Then replacing our values,


Therefore the frequency of the observer is 1047.86Hz
A.) Cubic meters is your answer
Cubic meters are used to measure the volume of solids.
hope this helps
Answer:
13.33 seconds
Explanation:
At maximum height, the equation of motion becomes:
<em> v = u + at</em>
Since the object was thrown vertically, the initial velocity (u) is zero and the acceleration (a) becomes the acceleration due to gravity (10 m/s2). The equation becomes:
<em>v = at</em>
<em>v = 480 k</em>m/hr = 133.333 m/s
10t = 133.333
t = 133.333/10
t = 13.33 seconds.
<em>The time for the ball thrown vertically with a velocity of 480 km/hr to reach the maximum height is </em><em>13.33 seconds</em><em>.</em>