Answer:
If conditions are just right, you can see Polaris from just south of the equator. Although Polaris is also known as the North Star, it doesn't lie precisely above Earth's North Pole. If it did, Polaris would have a declination of exactly 90 degree.
Explanation:
Solution:
We have,
Power [P] = 25000 Watt
Mass [m] = 6000 kg
Height [h] = 20 metres
Time [t] = ?
Now,
P = W/t = F x d/t = mxgx h/t
Or, 25000 = 6000 x 10 x 20/25000 [.......g = 10
m/s^2]
Or, t = 6000 x 10 x 20/25000
Or, t = 1200/25
Therefore, t = 48 second
Hence, the required time for the crane to lift the load is 48 seconds.
Energy of motion is the literal definition of kinetic energy
Answer:
Term 1 = (0.616 × 10⁻⁵)
Term 2 = (7.24 × 10⁻⁵)
Term 3 = (174 × 10⁻⁵)
Term 4 = (317 × 10⁻⁵)
(σ ₑ/ₘ) / (e/m) = (499 × 10⁻⁵) to the appropriate significant figures.
Explanation:
(σ ₑ/ₘ) / (e/m) = (σᵥ /V)² + (2 σᵢ/ɪ)² + (2 σʀ /R)² + (2 σᵣ /r)²
mean measurements
Voltage, V = (403 ± 1) V,
σᵥ = 1 V, V = 403 V
Current, I = (2.35 ± 0.01) A
σᵢ = 0.01 A, I = 2.35 A
Coils radius, R = (14.4 ± 0.3) cm
σʀ = 0.3 cm, R = 14.4 cm
Curvature of the electron trajectory, r = (7.1 ± 0.2) cm.
σᵣ = 0.2 cm, r = 7.1 cm
Term 1 = (σᵥ /V)² = (1/403)² = 0.0000061573 = (0.616 × 10⁻⁵)
Term 2 = (2 σᵢ/ɪ)² = (2×0.01/2.35)² = 0.000072431 = (7.24 × 10⁻⁵)
Term 3 = (2 σʀ /R)² = (2×0.3/14.4)² = 0.0017361111 = (174 × 10⁻⁵)
Term 4 = (2 σᵣ /r)² = (2×0.2/7.1)² = 0.0031739734 = (317 × 10⁻⁵)
The relative value of the e/m ratio is a sum of all the calculated terms.
(σ ₑ/ₘ) / (e/m)
= (0.616 + 7.24 + 174 + 317) × 10⁻⁵
= (498.856 × 10⁻⁵)
= (499 × 10⁻⁵) to the appropriate significant figures.
Hope this Helps!!!
The answer is B. The farmers will need to know what will happen as a result, to determine if it is worth releasing the insect.