Answer:
0.238 M
Explanation:
A 17.00 mL sample of the dilute solution was found to contain 0.220 M ClO₃⁻(aq). The concentration is an intensive property, so the concentration in the 52.00 mL is also 0.220 M ClO₃⁻(aq). We can find the initial concentration of ClO₃⁻ using the dilution rule.
C₁.V₁ = C₂.V₂
C₁ × 24.00 mL = 0.220 M × 52.00 mL
C₁ = 0.477 M
The concentration of Pb(ClO₃)₂ is:

62.5 mL is prepare .
What is molarity?
Molar concentration is a unit of measurement for the concentration of a chemical species, specifically a solute, in a solution, expressed as the amount of substance per unit volume of solution. The most often used unit for molarity in chemistry is the number of moles per litre, denoted by the unit symbol mol/L or mol/dm3 in SI units.
Molarity of the stock solution as 0.100 M
Volume of the dilute solution as 250 mL
Molarity of dilute solution as 0.0250 M
We are required to calculate the Volume of the stalk solution.
Taking the volume and molarity of the stock solution to be V₁ and M₁ respectively, and volume and molarity of the dilute solution to be V₂ and M₂ respectively.
We are going to use the dilution formula;
According to the dilution formula, M₁V₁ = M₂V₂
Rearranging the formula;
V₁ = M₂V₂ ÷ M₁
= (0.025 M × 0.25 L) ÷ 0.100 M
= 0.0625 L
But, 1 L = 1000 mL
V₁ = 62.5 mL
Therefore, the volume of the stock solution is 62.5 mL
Learn more about molarity from given link
brainly.com/question/26873446
#SPJ4
Answer:
(<em>i) Concentrated HNO3 can be stored and transported in aluminium containers as it reacts with aluminium to form a thin protective oxide layer on the aluminium surface. This oxide layer renders aluminium passive. (ii) Sodium hydroxide and aluminium react to form sodium tetrahydroxoaluminate(III) and hydrogen gas.</em>
Search it up bro it’s on the internet lol