To determine the k for the second condition, we use the Arrhenius equation which relates the rates of reaction at different temperatures. We do as follows:
ln k1/k2 = E / R (1/T2 - 1/T1) where E is the activation energy and R universal gas constant.
ln 1.80x10^-2 / k2 = 80000 / 8.314 ( 1/723.15 - 1/593.15)
k2 = 0.3325 L / mol-s
Answer: Each ion, or atom, has a particular mass; similarly, each mole of a given pure substance also has a definite mass. The mass of one mole of atoms of a pure element in grams is equivalent to the atomic mass of that element in atomic mass units (amu) or in grams per mole (g/mol).
Explanation:
<span>More surface area --> more molecules of the solute in contact with the solvent --> more chance for a solvent molecule to collide with the solute molecules --> dissolves faster
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
The knowledge of periodic table would be important in these three different careers such as medicine, pharmacology and engineering.
<h3>What is the importance of periodic table in following careers?</h3>
Periodic table is organised the whole elements vertically in groups and horizontally in periods with increasing atomic number.
The knowledge of arrangement of these elements serves alot of purposes in the following three different careers:
- Medicine: The element, iron is an important metal in the periodic table used in treatment of low blood levels.
- Pharmacology: The transition metals are useful in the field of pharmacology for the production of drugs. Example of such elements are chromium, manganese, cobalt, nickel, copper, and molybdenum.
- Engineering: The information of elements in the periodic table helps engineers in designing of materials used for constructions.
Therefore, the knowledge of periodic table is very important in these three different careers such as medicine, pharmacology and engineering.
Learn more about period table here:
brainly.com/question/15987580