Answer:
5.6L
Explanation:
At STP, the pressure and temperature of an ideal gas is
P = 1 atm
T = 273.15k
Volume =?
Mass = 9.5g
From ideal gas equation,
PV = nRT
P = pressure
V = volume
n = number of moles
R = ideal gas constant =0.082J/mol.K
T = temperature of the ideal gas
Number of moles = mass / molar mass
Molar mass of F2 = 37.99g/mol
Number of moles = mass / molar mass
Number of moles = 9.5 / 37.99
Number of moles = 0.25moles
PV = nRT
V = nRT/ P
V = (0.25 × 0.082 × 273.15) / 1
V = 5.599L = 5.6L
The volume of the gas is 5.6L
Answer:
Electrical force can pull and push
Explanation:
The velocity would be 0.5 i think
<h2><u>
Answer:</u></h2>
(These are not rounded to the correct decimal)
130.94 atm
13,266.6 kPa
99,571.4 mmHg
<h2><u>
Explanation:</u></h2>
<u></u>
PV = nRT
V = 245L
P = ?
R = 0.08206 (atm) , 8.314 (kPa) , 62.4 (mmHg)
T = 273.15 + 27 = 300.15K
n = 1302.5 moles
How I found (n).
5.21kg x 1000g/1kg x 1 mole/4.0g = 1302.5 moles
Now, plug all the numbers into the equation.
Pressure in atm = (1302.5)(0.08206)(300.15) / 245 = 130.94 atm (not rounded to the correct decimal)
Pressure in kPa = (1302.5)(8.314)(300.15) / 245 = 13,266.6 kPa (not rounded to the correct decimal)
Pressure in mmHg = (1302.5)(62.4)(300.15) / 245 = 99,571.4 mmHg (not rounded to the correct decimal)