Answer:
Hot and something you do not touch
Explanation:
We can calculate years by using the half-life equation. It is expressed as:
A = Ao e^-kt
<span>where A is the amount left at t years, Ao is the initial concentration, and k is a constant.
</span>From the half-life data, we can calculate for k.
1/2(Ao) = Ao e^-k(1620)
<span>k = 4.28 x 10^-4
</span>
0.125 = 1 e^-<span>4.28 x 10^-4 (</span>t)
t = 4259 years
Answer:
A machine have 75% efficiency means 25% of efficiency has been lost due to friction and a machine can work 75% only.
Answer:
The change in the internal energy of the system -878 J
Explanation:
Given;
energy lost by the system due to heat, Q = -1189 J (negative because energy was lost by the system)
Work done on the system, W = -311 J (negative because work was done on the system)
change in internal energy of the system, Δ U = ?
First law of thermodynamics states that the change in internal energy of a system (ΔU) equals the net heat transfer into the system (Q) minus the net work done by the system (W).
ΔU = Q - W
ΔU = -1189 - (-311)
ΔU = -1189 + 311
ΔU = -878 J
Therefore, the change in the internal energy of the system -878 J
Answer:
Decomposers (either Secondary Consumer or Tertiary Consumer)
Explanation:
Decomposers eat dead materials and break them down into chemical parts. ... They keep the ecosystem free of the bodies of dead animals or carrion. They break down the organic material and recycle it into the ecosystem as nutrients. Vultures, Blowflies, hyenas, crabs, lobsters and eels are examples of scavengers.