Answer:
HBr + H2O = H3O+ + Br-
So our conjugate acid is the H3O+ to H2O
Explanation:
A conjugate acid of a base results when the base accepts a proton.
Consider ammonia reacting with water to form an equilibrium with ammonium ions and hydroxide ions:
NH3 (aq) + H2O (l) ⇌ NH4+ (aq) + OH- (aq)
Ammonium, NH4+, acts as a conjugate acid to ammonia, NH3.
The answer to is all the information on a line graph is as precise as the information in the data table would be FALSE
Answer:
Bonds are polar when one element in a compound is more electronegative than the other. This creates a dipole in the molecule where one end of the molecule is partially positive and one end is partially negative
Explanation:
Each column is called a group<span>. The elements in each </span>group have<span> the same number of electrons in the outer orbital. Those outer electrons are also called valence electrons.</span>
Answer:

Explanation:
We will need a balanced chemical equation with masses, moles, and molar masses.
1. Gather all the information in one place:
Mᵣ: 18.02
2Na + H₂O ⟶ 2NaOH + H₂
m/g: 72.0
2. Moles of H₂O

3. Moles of Na
The molar ratio is 2 mol Na/1 mol H₂O.
