1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lesechka [4]
3 years ago
5

A 65.8-kg person throws a 0.0413 kg snowball forward with a ground speed of 32.5 m/s. A second person, with a mass of 58.7 kg, c

atches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 2.51 m/s, and the second person is initially at rest. (Disregard the friction between the skates and the ice.)
What are the velocities of the two people after the snowball is exchanged?
Physics
1 answer:
guapka [62]3 years ago
6 0

Answer:

v_{1} = 2.490\,\frac{m}{s}

v_{2} = 0.023\,\frac{m}{s}

Explanation:

The statement is described physically by means of the Principle of Momentum Conservation. Let assume that first person moves in the positive direction:

First Person

(65.8\,kg)\cdot (2.51\,\frac{m}{s}) = (65.8\,kg)\cdot v_{1} + (0.0413\,kg)\cdot (32.5\,\frac{m}{s} )

Second Person

(0.0413\,kg)\cdot (32.5\,\frac{m}{s})+(58.7\,kg)\cdot (0\,\frac{m}{s})=(0.0413\,kg+58.7\,kg)\cdot v_{2}

The final velocities of the two people after the snowball is exchanged is:

v_{1} = 2.490\,\frac{m}{s}

v_{2} = 0.023\,\frac{m}{s}

You might be interested in
A large, simple pendulum is on display in the lobby of the United Nations building. If the pendulum is 18.5 m in length, what is
zhannawk [14.2K]

Answer:

     t = 1,144 s

Explanation:

The simple pendulum consists of an inextensible string with a mass at the tip, the angular velocity of this is

     w = √( L / g)

The angular velocity is related to the frequency and period

     w = 2π f

      f = 1 / T

     w = 2π / T

Let's replace

     2π / T = √ (L / g)

     T = 2π √ (g / L)

Let's calculate

     T = 2π √ (9.81 / 18.5)

     T = 4,576 s

The definition of period in the time it takes the ball to come and go to a given point (a revolution) in our case we go from the end to the middle point that is a quarter of the path

     t = T / 4

     t = 4,576 / 4

     t = 1,144 s

6 0
4 years ago
A. How long does it take light to travel through a 3.0-mm-thick piece of window glass?
hodyreva [135]

Answer:

a) 1.517\times10^{-11} s

b) 3.41 mm

Explanation:

a)

We take the speed of light, c = 3.0\times10^8 m/s and the refractive index of glass as 1.517.

Speed = distance/time

Time = distance/speed

Refractive index, n = speed of light in vacuum / speed of light in medium

n=\dfrac{c}{s}

s=\dfrac{c}{n}

t=\dfrac{d}{c/n}

t=\dfrac{dn}{c}

t=\dfrac{3\times10^{-3}\times1.517}{3.0\times10^8}

t=1.517\times10^{-11}

b)

We take the refractive index of water as 1.333.

Speed in water = speed in vacuum / refractive index of water

Distance = speed * time

d=s\times t

d=\dfrac{c}{n_w}\times \dfrac{3\times10^{-3}\times1.517}{c}

d=\dfrac{3\times10^{-3}\times 1.517}{1.333}

d = 3.41 mm

6 0
4 years ago
What is the ability to complete extended periods of physical activity?
Galina-37 [17]

Answer:

D) WELLNESS

Explanation:

3 0
3 years ago
Read 2 more answers
A 2000-kg car moving with a speed of 20 m/s collides with and sticks to a 1500-kg car at rest at a stop sign. Show that because
amid [387]

Answer:

13.33m/s

Explanation:

Given data

m1= 2000kg

u1= 20m/s

m2= 1500kg

u2= 0m/s

v1= 10m/s

Required

The speed of the sticks

We know that  from the expression for the conservation of momentum

m1u1+m2u2= m1v1+m2v2

2000*20+1500*0=2000*10+1500*v2

40000=20000+1500v2

collect like terms

40000-20000= 1500v2

20000= 1500v2

v2= 20000/1500

v2= 13.33 m/s

Hence the velocity of the sticks is 13.33m/s

8 0
3 years ago
Two bicycle tires are set rolling with the same initial speed of 4.0 m/s along a long, straight road, and the distance each trav
umka2103 [35]

Answer:

The coefficient of rolling friction will be "0.011".

Explanation:

The given values are:

Initial speed,

v_i = 4.0 \ m/s

then,

v_f=\frac{4.0}{2}

    =2.0 \ m/s

Distance,

s = 18.2 m

The acceleration of a bicycle will be:

⇒ a=\frac{v_f^2-v_i^2}{2s}

On substituting the given values, we get

⇒    =\frac{(2.0)^2-(4.0)^2}{2\times 18.2}

⇒    =\frac{4-8}{37}

⇒    =\frac{-4}{37}

⇒    =0.108 \ m/s^2

As we know,

⇒  f=ma

and,

⇒  \mu_rmg=ma

⇒       \mu_r=\frac{a}{g}

On substituting the values, we get

⇒       =\frac{0.108}{9.8}

⇒       =0.011

7 0
3 years ago
Other questions:
  • What keeps an ionic bond held together?
    5·1 answer
  • A container of volume 0.6 m^3 contains 5.3 mol of argon gas at 24°C. Assuming argon behaves as an ideal gas, find the total inte
    7·1 answer
  • How are aquatic ecosystems classified?
    15·1 answer
  • The head of a rattlesnake can accelerate at 40 m/s2 in striking a victim. If a car could do as well, how long would it take to r
    6·1 answer
  • a stomp rocket takes 1.5 seconds to reach its maximum height what was the initial velocity and what was the maximum height ?
    14·2 answers
  • Which of the following is not a way by which heat can be transferred?
    8·1 answer
  • Visible light occupies the majority of the electromagnetic spectrum? Ture or false
    8·2 answers
  • Estimate the theoretical fracture strength of a brittle material if it is known that fracture occurs by the propagation of an el
    12·1 answer
  • What is types of motion ​
    13·2 answers
  • To which end of the horseshoe magnet will the north end of the magnet be attracted
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!