The rod's mass moment of inertia is 5kgm².
<h3>Moment of Inertia:</h3>
The "sum of the product of mass" of each particle with the "square of its distance from the axis of rotation" is the formula for the moment of inertia.
The Parallel axis Theorem can be used to compute the moment of inertia about the end of the rod directly or to derive it from the center of mass expression. I = kg m². We can use the equation for I of a cylinder around its end if the thickness is not insignificant.
If we look at the rod we can assume that it is uniform. Therefore the linear density will remain constant and we have;
or = M / L = dm / dl
dm = (M / L) dl


Here the variable of the integration is the length (dl). The limits have changed from M to the required fraction of L.

![I = \frac{M}3L}[(\frac{L^3}{2^3} - \frac{-L^3}{2^3} )]\\\\I = \frac{1}{12}ML^2](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7BM%7D3L%7D%5B%28%5Cfrac%7BL%5E3%7D%7B2%5E3%7D%20%20%20-%20%5Cfrac%7B-L%5E3%7D%7B2%5E3%7D%20%29%5D%5C%5C%5C%5CI%20%3D%20%5Cfrac%7B1%7D%7B12%7DML%5E2)
Mass of the rod = 15 kg
Length of the rod = 2.0 m
Moment of Inertia, I = 
= 5 kgm²
Therefore, the moment of inertia is 5kgm².
Learn more about moment of inertia here:
brainly.com/question/14119750
#SPJ4
A light year is a distance.
It's the distance that light travels in a year, through vacuum.
The distance is about 5.875 trillion miles.
The nearest star outside our solar system is about 4.2 light years from us.
Sorry to have rambled on for so long.
Answer:
A. 33.77 m/s
B. 6.20 s
Explanation:
Frame of reference:
Gravity g=-9.8 m/s^2; Initial position (roof) y=0; Final Position street y= -21 m
Initial velocity upwards v= 27 m/s
Part A. Using kinematics expression for velocities and distance:

Part B. Using Kinematics expression for distance, time and initial velocity

Since it is a second order equation for time, we solved it with a calculator. We pick the positive solution.
Oil spill on land and in the oceans and kills wildlife like the great barear reef