Answer:
Its state is in uniformly accelerated motion
Explanation:
When an object is acted upon the force of gravity only, we said that the object is in free fall.
According to Newton's second law of motion:

where F is the net force on an object, m is its mass, a its acceleration, when the net force on an object (F) is non-zero, than the object accelerates (because a is non-zero), so the object is in accelerated motion.
In case of free fall, the rate of acceleration of the object is equal to
, the acceleration due to gravity, and it is constant. So, the object is moving by uniformly accelerated motion.
The neutron is uncharged. That's why it was
given a name built on "neu" from "neutral".
<span>Force = Work done / distance = 4Nm / 2m = 2N</span>
Answer:
False
Explanation:
Think of the electric potential in terms of potential energy. If you imagine a place with high elevation (A) and another one at sea level (B), a ball will roll from high potential to low potential (A-->B).
Everything in our universe wants to reach a lower state of energy if no external force is acted upon it. Every object tends to slow down (friction), a radioactive element dissipates energy (an unstable element releases energy to get to a stable state), water in the clouds comes down to the ground (rain experiencing difference in potential energy).
Electric potential is exactly the same, you just can't see it! It flows from higher voltage (which is a synonym for electric potential) to lower voltage.
The minimum speed with which Captain Brady had to run off the edge of the cliff to make it safely to the far side of the river is around 6 meters per second.
<h3>Further explanation</h3>
This is a free fall 2-dimensional type of problem, therefor we can write equations for both dimensions which model the fall of captain Brady. Let's call <em>x </em>the distance travelled by the captain on the horizontal direction and <em>y </em>the distance travelled on the vertical direction.
Lets suppose that Brady jumped with a complete horizontal velocity from a point which we will call the origin (meaning zero horizontal and vertical displacement), and let's call <em>ta</em> the time it took for captain Brady to reach the river (meaning the time he spent on the air). The equations of motion for the captain will be:


We know that at time <em>ta</em> the captain would have traveled 6.7 m on the horizontal direction, and 6.1 m in the vertical direction. Therefor we can write that:


Which gives us a system of 2 equations and 2 unknowns (<em>V</em> and <em>ta</em>). From the second equation we can solve for <em>ta</em> as:

And solving for <em>V</em> on the first equation, we find that:

Which is almost 6 meters per second.
<h3>Learn more</h3>
<h3>Keywords</h3>
Free fall, projectile, gravity