Answer:
I'm not sure but I think it's organic
Answer:
There was 450.068g of water in the pot.
Explanation:
Latent heat of vaporisation = 2260 kJ/kg = 2260 J/g = L
Specific Heat of Steam = 2.010 kJ/kg C = 2.010 J/g = s
Let m = x g be the weight of water in the pot.
Energy required to vaporise water = mL = 2260x
Energy required to raise the temperature of water from 100 C to 135 C = msΔT = 70.35x
Total energy required = 

Hence, there was 450.068g of water in the pot.
Answer:
As the y-intercept increases, the graph of the line shifts up;
As the y-intercept decreases, the graph of the line shifts down
Explanation:
There are two ways to think about this problem. The first way would be the graphical approach:
- if we only change the y-intercept, this means we keep the same slope;
- y-axis is the vertical axis;
- if we change the point at which the line crosses the y-axis, we either shift it upward for a higher y-intercept or downward for a lower y-intercept.
Now, thinking algebraically, a line has the following equation in a general form:

The y-intercept is essentially obtained when x = 0, then:
y = b:
- if we increase b value, the y value increases, so the graph shifts upward;
- if we decrease b value, the y value decreases, so the graph shifts downward.
Right answer is option d that o is oxidized.
<u>Answer:</u> Carbon-carbon double bond is stronger and shorter than the single bond.
<u>Explanation:</u>
It is given that carbon-carbon double bond has greater energy than the carbon-carbon single bond.
Bond energy is directly proportional to the bond strength, which means that the double bond will have greater strength than single bond and triple bond has the greatest strength of all the bonds.

Bond energy is inversely proportional to the bond length of the carbon-carbon bond. This means that more is the bond energy, shorter will be the bond and vice-versa.

Hence, carbon-carbon double bond is stronger and shorter than the single bond.