Answer:
CO2
cardon dioxide is produced
Answer:
Both
Explanation:
produce OH− (hydroxide) ions. According to this view, an acid–base reaction involves the reaction of a proton with a hydroxide ion to form water. Although Brønsted and Lowry defined an acid similarly to Arrhenius by describing an acid as any substance that can donate a proton, the Brønsted–Lowry definition of a base is much more general than the Arrhenius definition. In Brønsted–Lowry terms, a base is any substance that can accept a proton, so a base is not limited to just a hydroxide ion. This means that for every Brønsted–Lowry acid, there exists a corresponding conjugate base with one fewer proton, as we demonstrated in Chapter 4 "Reactions in Aqueous Solution". Consequently, all Brønsted–Lowry acid–base reactions actually involve two conjugate acid–base pairs and the transfer of a proton from one substance (the acid) to another (the base). In contrast, the Lewis definition of acids and bases, discussed in Chapter 8 "Ionic versus Covalent Bonding", focuses on accepting or donating pairs of electrons rather than protons. A Lewis base is an electron-pair donor, and a Lewis acid is an electron-pair acceptor.

C. mass is protons and neutrons. Both are in the nucleus
Explanation:
Magnesium reacts with dilute hydrochloric acid in a conical flask which is connected to an inverted measuring cylinder in a trough of water. The volume of hydrogen gas produced is measured over a few minutes, and the results are used to plot a graph
This is intended as a class practical. It is best if the students work in pairs because setting up and starting the experiment requires more than one pair of hands. One student can add the magnesium ribbon to the acid and stopper the flask, while the other starts the stopclock. During the experiment, one student can take the readings while the other records them. The experiment itself takes only a few minutes. But allow at least 30 minutes to give students time to set up, take readings and draw graph.
please mark as brainliest